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Abstract——Nonsteroidal anti-inflammatory drugs
(NSAIDs) represent one of the most highly utilized
classes of pharmaceutical agents in medicine. All
NSAIDs act through inhibiting prostaglandin synthe-
sis, a catalytic activity possessed by two distinct cyclo-
oxygenase (COX) isozymes encoded by separate genes.
The discovery of COX-2 launched a new era in NSAID
pharmacology, resulting in the synthesis, marketing,
and widespread use of COX-2 selective drugs. These
pharmaceutical agents have quickly become estab-
lished as important therapeutic medications with po-
tentially fewer side effects than traditional NSAIDs.
Additionally, characterization of the two COX isozymes

is allowing the discrimination of the roles each play in
physiological processes such as homeostatic mainte-
nance of the gastrointestinal tract, renal function, blood
clotting, embryonic implantation, parturition, pain, and
fever. Of particular importance has been the investiga-
tion of COX-1 and -2 isozymic functions in cancer, dys-
regulation of inflammation, and Alzheimer’s disease.
More recently, additional heterogeneity in COX-related
proteins has been described, with the finding of variants
of COX-1 and COX-2 enzymes. These variants may func-
tion in tissue-specific physiological and pathophysiolog-
ical processes and may represent important new targets
for drug therapy.

I. Cyclooxygenase Isozymes

A. Prostaglandins and Cyclooxygenase

Prostaglandins, potent bioactive lipid messengers de-
rived from arachidonic acid (AA1), were first extracted
from semen, prostate, and seminal vesicles by Goldblatt

and von Euler in the 1930s and shown to lower blood
pressure and cause smooth muscle contraction. Berg-
ström and colleagues purified the first prostaglandin
isomers during the 1950s and 60s, and in 1964, van Dorp
et al. and Bergstrom et al. independently identified AA,
a 20-carbon tetraenoic fatty acid (C20:4�6) as the pre-
cursor to prostaglandins. The cyclooxygenase reaction
through which AA is enzymatically cyclized and is oxy-
genated to yield endoperoxide-containing prostaglandin
G2 (PGG2) was later identified by Samuelsson and col-
leagues (Hamberg and Samuelsson, 1973; Hamberg et
al., 1974) (Fig. 1). The enzyme, cyclooxygenase (COX)
that catalyzes this cyclooxygenation reaction also re-
duces a hydroperoxyl in PGG2 to a hydroxyl to form
PGH2 via a separate peroxidase active site on the en-
zyme. Isomerases and oxidoreductases produce various
bioactive prostaglandin isomers using PGH2 as sub-
strate as shown in Fig. 1.

Until 1976 (Hemler and Lands, 1976; Miyamoto et al.,
1976), when purified COX preparations were first de-
scribed, tissue homogenates were used as a source of
COX enzyme activity, which was frequently referred to

1Abbreviations: AA, arachidonic acid; AD, Alzheimer’s disease;
CLASS, Celecoxib Long-Term Arthritis Safety Study; COX, cycloox-
ygenase; EP, prostaglandin E receptor; ER, endoplasmic reticulum;
FDA, U.S. Food and Drug Administration; GFR, glomerular filtra-
tion rate; GI, gastrointestinal; HETE, hydroxyeicosatetraenoic acid;
IFN, interferon; IL, interleukin; kb, kilobase(s); LDS, linoleate diol
synthase; LPS, lipopolysaccharide; MELISSA, Meloxicam Large-
Scale International Study Safety Assessment; MI, myocardial infarc-
tion; NF�B, nuclear factor-�B; NO, nitric oxide; NSAID, nonsteroidal
anti-inflammatory drug; OA, osteoarthritis; PG, prostaglandin;
PGHS, prostaglandin H synthase; PCOX, partial COX; PIOX, patho-
gen-inducible oxygenase; POB, perforation, obstruction, or bleed;
POX, peroxidase; PPAR, peroxisome proliferator-activated receptor;
PUB, perforation, ulcer, or bleed; RA, rheumatoid arthritis; SE-
LECT, Safety and Efficacy Large-Scale Evaluation of COX-Inhibit-
ing Therapies; SNP, single nucleotide polymorphism; TALH, thick
ascending limb of Henle; TNF, tumor necrosis factor; TX, thrombox-
ane; UTR, untranslated region; VEGF, vascular endothelial growth
factor; VIGOR, Vioxx Gastrointestinal Outcomes Research Study.
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at that time as a prostaglandin synthetase. Because the
COX enzyme reaction does not require ATP, the nomen-
clature was later changed to synthase. The COX en-
zyme, also known as prostaglandin H synthase (PGHS)
or prostaglandin endoperoxide synthase (E.C.
1.14.99.1), was identified as the major enzyme in the
oxidative conversion of AA to PGG2 and PGH2 (Smith
and Lands, 1972; Hamberg et al., 1974), with seminal
vesicles of sheep, bovines being a rich enzyme source
(Smith and Lands, 1972). Thus, purification of PGHS
enzyme to homogeneity was first achieved from the
sheep (Hemler and Lands, 1976; van der Ouderaa et al.,
1977) and bovine (Miyamoto et al., 1976; Ogino et al.,
1978) seminal vesicles. This purified enzyme migrated
in the region of approximately 67 kDa in SDS-polyacryl-
amide gel electrophoresis and contained cyclooxygenase
and peroxidase activities, which were later found to be

at separate sites (Marshall and Kulmacz, 1988). Since
detergents such as Tween 20 were needed to solubilize
the enzyme, it was classified as an integral microsomal
membrane protein.

In 1971, John Vane used a cell-free homogenate of
guinea pig lung to demonstrate that aspirin, indometh-
acin, and salicylate, popular nonsteroidal anti-inflam-
matory drugs (NSAIDs), were inhibitors of this en-
zyme—thus defining the mechanism of action of this
important class of drugs.

B. Early Evidence for Multiple Cyclooxygenases

Researchers, beginning in the early 1970s, speculated
on whether there was more than one COX enzyme.
Flower and Vane (1972) postulated the existence of an
acetaminophen-inhibitable COX activity that was in dog
brain but not in rabbit spleen. The same year, two cat-
alytically distinct prostaglandin synthase activities
were reported to be present in acetone powder extracts
of sheep vesicular glands (Smith and Lands, 1972).
Studies of autoinactivation rates of COX, inhibition by
NSAIDs, and time course profiles of PGE2 and PGF2�

synthesis led Lysz and colleagues (1982, 1988) to pro-
pose that rabbit and mouse, but not rat brain, contained
two forms of COX.

It was, however, through the study of prostaglandin
induction by mitogens and proinflammatory agents, as
well as prostaglandin down-regulation by glucocorti-
coids, that the most provocative data regarding the po-
tential of more than one COX were obtained. The phe-
nomenon that was observed by many laboratories was
that prostaglandin synthesis and release in some situa-
tions, such as in activated platelets, occurs within a few
minutes after stimulation. In other cases, such as in
mitogen-stimulated fibroblasts, prostaglandin synthesis
may take hours to occur. In 1985, Habenicht and col-
leagues (1985) reported that platelet-derived growth fac-
tor treatment of Swiss 3T3 cells resulted in an early (10
min) and a late (2–4 h) peak in induction in prostaglan-
din synthesis. Only the late peak was blocked by cyclo-
heximide, leading to the conclusion that platelet-derived
growth factor-stimulated PG synthesis occurred by “di-
rect effects on the PG-synthesizing enzyme system, one
involving a protein synthesis-independent mechanism
and another that requires rapid translation of cyclooxy-
genase”. The activities revealed in Habenicht’s early
study were indicative of an endogenous COX enzyme
(COX-1) and an inducible enzyme (COX-2). Many other
laboratories at this time did similar studies on induction
of prostaglandin synthesis, but with only nucleic acid
and antibody probes to the seminal vesicle form of COX
to work with, many investigators observed the paradox-
ical phenomenon that, in many instances, prostaglandin
induction occurred without an increase in the seminal
vesicle COX—an enzyme which was found to be present
in most cells and tissues investigated (DeWitt and
Smith, 1988). Frequently only marginal increase in sem-

FIG. 1. The arachidonic acid cascade. The fate of arachidonic acid in
cells as it is metabolized by lipoxygenases to HETEs and hydroperoxyei-
cosatetraenoic acids (HPETEs) or by cyclooxygenases to prostaglandin H2
via the short-lived hydroperoxyl-containing intermediate prostaglandin
G2. NSAIDs block the synthesis of prostaglandin G2. Prostaglandin H2
spontaneously rearranges or is enzymatically isomerized, oxidized, or
reduced to yield bioactive prostaglandin isomers, some of which are
shown. [Reprinted with permission from Clinician’s Manual on COX-2
Inhibition second edition (Vane JR, Botting R, Emery P, and Hawkey CJ,
eds) Science Press Ltd., London, 2002].
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inal vesicle COX was observed despite robust increase in
PG synthesis. Similar anomalies in which PG synthesis
and seminal vesicle COX did not coincide were observed
with regard to the action of glucocorticoids, which
strongly decreased PG synthesis but typically had little
to no effect on seminal vesicle COX levels. Various pos-
tulates were proposed that were consistent with these
observed phenomena, the most common of which was
that changes in substrate delivery were responsible for
these fluctuations in PG synthesis.

In 1989, Rosen et al. used low-stringency Northern
blot hybridization with an ovine seminal vesicle COX
cDNA as probe to detect a 4.0-kb RNA, in addition to the
known 2.8-kb mRNA encoding seminal vesicle COX.
This 4.0-kb mRNA was inducible and paralleled induc-
tion of enzyme activity. These investigators concluded
that “the larger mRNA may encode for a cyclooxygenase”
encoded by a distinct gene. In 1990, Needleman and
colleagues (Fu et al., 1990) studying lipopolysaccharide
(LPS) stimulation of monocytes concluded that these
“cells may contain two pools of COX, each with a differ-
ential sensitivity to LPS or DEX (dexamethasone).” Dur-
ing this time, Young, Macara, and colleagues (Han et al.,
1990) identified, by using giant two-dimensional protein
gel electrophoresis, proteins immunoreactive with
COX-1 antibodies that were induced in v-src-trans-
formed cells. The evidence in these and other early stud-
ies was consistent with distinct inducible and constitu-
tive COX isozymes encoded by separate genes but was
also compatible with other explanations.

C. Studies of Cell Division and the Discovery of
Cyclooxygenase-2

The answer to the mechanism of how COX enzyme
activity rapidly increases PG induction in inflammation
and in other physiological contexts came from studies of
cell division. In the late 1980s, Simmons et al. (1989)
and Herschman (Varnum et al., 1989) and colleagues
independently identified immediate-early genes in fibro-
blast-like cells activated by mitogens. Genes found by
Simmons in chicken (Simmons et al., 1989; Xie et al.,
1991) and mouse (Simmons et al., 1991) were activated
by the v-src oncogene, phorbol esters and serum. Her-
schman used Swiss 3T3 cells to identify tetradecanoyl-
13-phorbol acetate-inducible sequences (or TIS genes),
which were also induced by other mitogens (Varnum et
al., 1989; Kujubu et al., 1991). In 1991, each laboratory
independently reported that one of their sequences en-
coded a new inducible COX enzyme. Also contributing to
the identification of COX-2 in 1991, Young and col-
leagues (O’Banion et al., 1991) reported a partial pre-
dicted sequence of COX-2 from a murine cDNA. The
inducible enzyme cloned in these studies is now most
frequently referred to as COX-2 and the seminal vesicle
form of the enzyme as COX-1.

Herschman and colleagues expressed the mouse
TIS10 cDNA in heterologous cells and showed that in-

creased prostaglandin E2 synthesis was induced by this
cDNA (Fletcher et al., 1992). Ectopic overexpression was
also done by Young’s laboratory (O’Banion et al., 1992)
and Meade et al. (1993), who also demonstrated the
importance of the 3�-untranslated region of the COX-2
mRNA in governing overexpression of the enzyme.

Using mouse COX-2 sequences as probe, Hla and Neil-
son (1992) identified and published the sequence of the
human homolog of TIS10/CEF147, which they named
COX-2. Overexpression of human COX-2 cDNA in Cos
cells also induced COX enzymatic activity, similar to
that of TIS10, and this activity was inhibited by nonste-
roidal anti-inflammatory drugs (Hla and Neilson, 1992).
The human COX-2 cDNA was widely expressed as an
inducible gene in nonimmortalized vascular and inflam-
matory cells.

D. Structure of Cyclooxygenase-1 and Cyclooxygenase-2

Pure preparations of the COX-1 enzyme obtained from
seminal vesicles were instrumental in the elucidation of
the primary structure of this enzyme by molecular clon-
ing. Both the N terminus and the internal sequences
following limited trypsin digestion of the sheep seminal
enzyme were reported (Chen et al., 1987). Roth and
colleagues (1975), using sheep and bovine seminal vesi-
cle enzyme preparations, showed that aspirin acetylated
the COX enzyme. The region of the active site residues
and the determination of the serine acetylated by aspi-
rin were elucidated by sequencing 3H-aspirin-labeled
peptides of the sheep seminal vesicle enzyme (Roth et
al., 1980; van der Ouderaa et al., 1983; DeWitt et al.,
1990); however, molecular cloning by three different lab-
oratories ultimately elucidated the complete primary
structure of the COX-1 enzyme (DeWitt and Smith,
1988; Merlie et al., 1988; Yokoyama et al., 1988).

Sequence analysis of COX-1 cDNAs indicated that
they contained an open reading frame of �1.8 kb, which
contained all the polypeptide sequences from protein
microsequencing efforts (Roth et al., 1980, 1983; DeWitt
and Smith, 1988), including the aspirin acetylation site
(DeWitt et al., 1990). These data strongly suggested that
the isolated cDNA clone encoded the sheep seminal ves-
icle COX enzyme. In addition to ovine COX-1, the gene
for the human homolog of this enzyme was also cloned
(Yokoyama and Tanabe, 1989). These cloning efforts
were followed by the demonstration that the cDNA for
sheep seminal vesicle COX exhibited both cyclooxygen-
ase and peroxidase activities upon ectopic overexpres-
sion in mammalian and insect cells (DeWitt et al., 1990;
Funk et al., 1991; Shimokawa and Smith, 1992a,b;
Meade et al., 1993). Mutagenesis experiments were con-
ducted to identify critical residues for catalysis, such as
the heme coordination sites, aspirin acetylation sites,
etc. (DeWitt, 1990; Shimokawa et al., 1990; Shimokawa
and Smith, 1992b)

Northern blot analysis with cDNA probes of COX-1
identified a major mRNA species of 2.8 kb and a minor
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species of 5.2 kb in human endothelial cells (Hla, 1996).
Further sequence analysis of a human endothelial cell-
derived cDNA, which encoded the 3�-end of the 5.2-kb
mRNA, indicated that the 5.2-kb cDNA and the 2.8-kb
cDNAs represent alternatively polyadenylated mRNA
species with differing lengths of the 3�-UTR (Hla, 1996).
These alternative polyadenylation states were also con-
firmed in cDNAs encoding the 3� of the 5.2-kb mRNA
from a human megakaryoblastic cell line (Plant and
Laneuville, 1999).

The predicted amino acid sequences of COX-2 cloned
in chicken and mammals showed it to possess approxi-
mately 60% amino acid identity with COX-1 (Simmons
et al., 1991). COX-1 and COX-2 were found to be approx-
imately 600 amino acids in size in all species.

The COX-1 and/or -2 cDNA sequences from many
organisms, including bony and cartilaginous fish, birds,
and mammals have been characterized. Furthermore
COX genes appear to be expressed in invertebrates, such
as coral and sea squirts, where two COXs have been
identified in two different species of each phylum (Valm-
sen et al., 2001, Jarving et al., 2004). These data suggest
that the cyclooxygenase pathway was present in early
invertebrate speciation in the animal kingdom. Known
COX sequences are aligned in Fig. 2, and domains and
residues essential to their function are designated. From
an evolutionary standpoint COX-1 and COX-2 appear to
have resulted from a gene duplication event that oc-
curred early in or before vertebrate speciation (Fig. 3,
courtesy of G. A. Fitzgerald and T. Grosser) as reviewed
recently by Jarving et al. (2004).

Cyclooxygenases in unicellular organisms, insects, or
the plant kingdom have not been identified; however,
COX enzymes have recently been determined to be
members of a larger fatty acid oxygenase family that
includes pathogen-inducible oxygenases (PIOXs). These
latter enzymes have been identified in monocotyledon
and dicotyledon plants, Caenorhabditis elegans, and
bacteria (Pseudomonas) (Fig. 4). Like COXs, PIOXs ox-
ygenate polyunsaturated fatty acids using molecular ox-
ygen (Sanz et al., 1998; Hamberg et al., 1999; Koeduka
et al., 2000). They also introduce a hydroperoxyl moiety
into the fatty acid, which is introduced at the � carbon
by PIOXs to form 2R-hydroperoxy fatty acids. Genera-
tion of �-peroxyl-fatty acids by PIOXs has been proposed
to be a signaling response in these organisms to activate
genes needed for antipathogen defense (Sanz et al.,
1998).

COXs and PIOXs share approximately 30% sequence
identity, and PIOXs contain conserved critical residues
needed for fatty acid oxygenation seen in COX. Sequence
similarity to COXs in the region of the Tyr385 has also
been found in the enzyme linoleate diol synthase (LDS)
from fungus (Oliw et al., 1998; Su et al., 1998; Hörnsten
et al., 1999). This enzyme is a homotetrameric ferric
hemeprotein that catalyzes the dioxygenation of linoleic
acid to (8R)-hydroperoxylinoleate and isomerization of

this latter compound to (7S,8S)-dihydroxylinoleate.
Like COXs, the enzyme is known to form ferryl inter-
mediates and a tyrosyl radical. PIOXs and LDSs are
clearly related to peroxidases; however, there is no
evidence that PIOXs or LDS possess peroxidase activ-
ity. These findings lead to the conclusion that PIOXs,
LDS, and COXs each represent distinct subfamilies of
fatty acid oxygenases that are descended from ancient
peroxidases. If they descend from a common peroxidase
progenitor, LDS, PIOXs and COXs have additionally
gained hydrophobic pockets for binding and oxygenation
of fatty acid substrates; however, the PIOX and LDS
branches of this fatty acid oxygenase family have a
degenerate peroxidase active site, that likely functions
solely to activate the enzyme. PIOXs and LDSs, there-
fore, are predicted to perform primarily the dioxygen-
ation reaction typical of the COX active site (see below).
Since PIOXs and LDS are found in plants, bacteria,
fungus, and lower animals, the fatty acid oxygenase
progenitor of COXs and PIOXs is predicted to exist very
early in evolution, underscoring the concept that gen-
eration of oxygenated fatty acids by these enzymes
represents an evolutionarily ancient mechanism of
cell signaling.

Recently a cyclooxygenase enzyme from the protozoan
Entamoeba histolytica has been identified that lacks
structural similarity with other COXs, PIOXs, or LDS
enzymes, but makes PGE2 from arachidonic acid (Dey et
al., 2003). Therefore, prostaglandin-synthesizing en-
zymes distinct from the COX lineage characterized in
vertebrates, coral, and sea squirts appear to have arisen
during speciation of some organisms.

Landmark studies by Garavito and colleagues (Picot
et al., 1994) elucidated the tertiary and quaternary
structure of COX-1. Early studies in the 1970s showed
that COX-1 was likely a dimer and was tightly bound to
microsomal membranes; however, the topology of the
enzyme in microsomal membranes was unknown. At
crystallographic resolution, Garavito’s studies described
COX-1’s distinct domains for dimerization, membrane
binding, and catalysis. A fourth domain, the N-terminal
signal peptide, which is clearly evident in the primary
structure of COX-1, was not observed because this se-
quence is cotranslationally cleaved from the nascent
polypeptide by microsomal signal peptidase.

Crystallographic structures of COX-2 have been ob-
tained by Luong et al. (1996), Bayly et al. (1999), and
Kurumbail et al. (1996) and show striking similarity
with COX-1. In fact, all known COX enzymes share the
same functional domains. Outstanding reviews of COX
structure and enzyme kinetics have recently been writ-
ten (Garavito and DeWitt, 1999; Marnett, 2000; Smith
et al., 2000) and thus only the essential aspects of these
topics needed to understand the pharmacology of
NSAIDs are discussed here.

The structures of COX-1 and COX-2 predict that both
enzymes are located in the lumen of the nuclear enve-
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lope and endoplasmic reticulum. Structural aspects of
each of the four domains (shown in Fig. 2 and the crys-
tallographic structures of Fig. 5) of COX-1 and COX-2
lead to this conclusion.

1. Amino-Terminal Signal Peptide. Nascent COX-1
and COX-2 polypeptides are directed into the lumen of
the endoplasmic reticulum by amino-terminal signal
peptides. Although cleaved from the nascent polypep-

FIG. 2. Alignment of COX isoenzymes. Known COX sequences that are complete are aligned. Signal peptide sequences, potential glycosylation
sites, and some important residues that function in catalysis are in bold. Sequence encoded by intron-1 in COX-3 and PCOX-1a is underlined.
Dimerization and membrane binding domains are denoted with a heavy underline. All sequence carboxyterminal to dimerization domain 2 constitutes
the catalytic domain.
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tide, these hydrophobic peptides show a size difference
between COX-1 and COX-2 that, until recently, has been
of unknown biological significance. The signal peptide
for COX-1 is always 22 to 26 amino acids in length with
a large hydrophobic core comprised of four or more
leucines or isoleucines (Fig. 2). COX-2’s signal peptide is
17 amino acids long in all species and appears to be less

hydrophobic. In vitro translation experiments demon-
strate that COX-1 is rapidly translocated into the lumen
of canine pancreatic microsomes, whereas COX-2 is in-
efficiently translocated (Xie et al., 1991). Immediately
following the signal peptide in COX-1 are eight amino
acids that are not found in COX-2 (Fig. 2). The function
of this sequence is unknown. Recently, as described be-

FIG. 2B
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low, variants of COX-1 have been identified in which
retention of all or part of intron-1 results in a retained
signal peptide in COX-1, altering the biological proper-
ties of the enzyme (Chandrasekharan et al., 2002). Also,
one coral isozyme has seven amino acids inserted in the
same location; however, in this case, the insertion ap-
pears to change the location of the cleavage site in
COS-7 cells rather than to affect retention of the signal
peptide (Jarving et al., 2004).

2. Dimerization Domain. COX-1 and COX-2 dimers
are held together via hydrophobic interactions, hydro-
gen bonding, and salt bridges between the dimerization
domains of each monomer. Heterodimerization of COX-1
and COX-2 subunits does not occur. The dimerization
domain is encoded by approximately 50 amino acids
near the amino terminus of the proteolytically processed
protein (Figs. 2 and 5). Three disulfide bonds hold this
domain together in a structure reminiscent of epidermal

FIG. 2C
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growth factor. A fourth disulfide bond links the dimer-
ization domain with the globular catalytic domain. The
presence of disulfide bonds, which require an oxidizing
environment, is consistent with the location of COXs
inside the lumen of the nuclear envelope, ER, or Golgi,
which have redox states that are significantly more ox-
idized than cytosol.

3. Membrane Binding Domain. COX isozymes associ-
ate with the intraluminal surface of microsomal mem-

branes in an unusual fashion. Rather than employing
transmembrane spanning sequences or covalently bound
lipids for attachment, COX isozymes contain a tandem
series of four amphipathic helices, which creates a hydro-
phobic surface that penetrates into the upper portion of the
luminal side of the hydrophobic core of the lipid bilayer
(Figs. 2 and 5). These helices are encoded by approximately
50 amino acids found immediately carboxy-terminal to the
dimerization domain (Fig. 2). The helices allow COX dimers

FIG. 2D
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to float on the surface of the lumen of the ER/nuclear enve-
lope, with the majority of the protein protruding into the
luminal space of these compartments. The membrane bind-
ing domain also forms the mouth of a narrow hydrophobic
channel that is the cyclooxygenase active site.

4. Catalytic Domain. Carboxy-terminal to the mem-
brane binding domain in COX primary structures is the

catalytic domain, which comprises 80% (approximately
480 amino acids) of the protein and contains two distinct
enzymatic active sites.

a. Peroxidase Active Site. The catalytic domain is
globular with two distinct intertwining lobes. The inter-
face of these lobes creates a shallow cleft on the upper
surface of the enzyme (i.e., the surface furthest from the

FIG. 2E
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membrane) where the peroxidase active site is located
and where heme is bound. Coordination of the heme is
via an iron-histidine bond involving His388 in sheep
COX-1. (All numbering hereafter uses sheep COX-1 as
reference.). Other important interactions between the
protoporphyrin also occur, and specific amino acids that

may function in coordinating PGG2 have been identified
(Malkowski et al., 2000; Thuresson et al., 2001). The
geometry of heme binding leaves a large portion of one
side of the heme exposed in the open cleft of the perox-
idase active site for interaction with PGG2 and other
lipid peroxides.

FIG. 2F
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b. Cyclooxygenase Active Site. The cyclooxgyenase
active site is a long, narrow, dead-end channel of largely
hydrophobic character whose entrance is framed by
the four amphipathic helices of the membrane binding
domain. The channel extends approximately 25 Å into
the globular catalytic domain and is on average about
8 Å wide (Picot et al., 1994). However, significant
narrowing of the channel is observed where arginine

120, one of only two ionic residues found in the COX
active site, protrudes into the channel and forms a
hydrogen bonded network with glutamate 524 (the
other ionic residue in the channel) and tyrosine 355.
Arginine 120 is essential for binding substrates and
carboxylate-containing NSAIDs in COX-1. In contrast,
this residue is unessential in binding substrate in
COX-2 (Rieke et al., 1999), where it also appears to be

FIG. 2G
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nonessential in coordinating carboxylate-containing
NSAIDs (Greig et al., 1997).

The upper portion of the channel, or catalytic pocket,
contains tyrosine 385 that forms a tyrosyl radical, ab-
stracts hydrogen from the pro-S side of carbon 13 of AA,
and creates an activated arachidonyl radical that under-
goes the cyclization/oxygenation reaction shown in Figs.
6 and 7. Also in the hydrophobic pocket is Ser530, which
is transacetylated by aspirin. The hydroxyl of serine 530,
together with valine 349, appears to be essential in
governing the stereochemistry of oxygen attack at car-
bon 15 in the production of PGG2 (Schneider et al.,
2002); however, its acetylation prevents abstraction of
hydrogen from AA in COX-1 by sterically preventing AA
from binding productively in the active site (Rowlinson
et al., 2000). In contrast, abstraction of hydrogen does
occur in acetylated COX-2, but cyclization of the arachi-
donyl radical and formation of the endoperoxide does not
occur, yielding 15-R-hydroxyeicosotetraenoic acid (15R-
HETE) rather than PGH2 (Holtzman et al., 1992).

A crucial structural difference between the active sites
of COX-1 and COX-2 is a substitution of isoleucine 523
in COX-1 for a valine in COX-2 (Figs. 2 and 8). This
single difference opens a hydrophobic outpocketing in
COX-2 that can be accessed by some COX-2-selective
drugs (Kurumbail et al., 1996). There are other changes
in residues that are near but do not line the COX active
site, so-called second shell residues, that result in subtle
changes and a slightly enlarged COX-2 active site rela-
tive to COX-1 (Kurumbail et al., 1996; Luong et al.,
1996).

The evolutionary conservation of an enlarged cycloox-
ygenase active site in COX-2 relative to COX-1 may be
essential to the recognition of bulkier substrates by
COX-2. Anandamide (arachidonylethanolamide) and
2-arachidonylglycerol are endocannabinoids that are ef-

ficiently oxidized by COX-2 to endocannabinoid-derived
prostanoids (Kozak et al., 2002, 2003). COX-2 utilizes
these bulkier substrates as efficiently as arachidonic
acid, and the resulting endoperoxide can be utilized by
downstream isomerases (Kozak et al., 2002). The func-
tion of these prostanoid-like oxidized endocannabinoids
is unknown but may represent new biological roles of
COX-2. The endocannabinoid analog methandamide up-
regulates COX-2 expression, further linking this enzyme
with metabolism of endocannabinoids (Gardner et al.,
2003; Ramer et al., 2003)

The catalytic reactions involved in AA cyclooxygen-
ation to form PGG2 are shown in Figs. 6 and 7. Elegant
studies done collaboratively by the laboratories of Gara-
vito and Smith (Malkowski et al., 2000; Thuresson et al.,
2001) have succeeded in defining the productive struc-
ture of COX-1 with its substrate AA as well as with
eicosapentaenoic and linoleic acids (Malkowski et al.,
2001). COX-1 binds AA in an extended L shape, its
carboxylate forming both a salt bridge with the guani-
dinium group of arginine 120 and also a hydrogen bond
with tyrosine 355. The remainder of the fatty acid makes
more than 50 mostly hydrophobic interactions with 19
amino acid residues, which position substrate for hydro-
gen abstraction and facilitate conversion to PGG2 rather
than to HETEs (Thuresson et al., 2001). Two molecules
of oxygen for the bisoxygenation reaction and hydroper-
oxidation reaction that yield the endoperoxide and hy-
droperoxide moieties, respectively, have been postulated
to diffuse into the COX active site from the direction of
the membrane, thus resulting in the observed fact that
attack of oxygen at carbon 11, to eventually result in the
PGG2 endoperoxide, occurs from the opposite or antero-
facial orientation from that of hydrogen abstraction at
carbon 13.

At the carboxy terminus of the catalytic domain of
COX-1 and COX-2 are modified versions of the KDEL
sequence that act as a signal for retention of proteins in
the endoplasmic reticulum (Song and Smith, 1996). Ad-
ditionally, COX-2 has an 18-amino acid sequence located
next to this retention signal (Fig. 2G). This structure,
which is not found in COX-1, is not fixed in crystallo-
graphic studies, and its function is unknown.

The above structural features are consistent with lo-
calization of COX isozymes inside the lumen of the ER,
a fact that is further supported by numerous studies
using fluorescence and immuno-electron microscopy
(Morita et al., 1995; Ren et al., 1995; Song and Smith,
1996; Liou et al., 2000); however COX-1 has been found
by Weller and colleagues to be localized to lipid bodies in
leukocytes and other cells (Bozza et al., 1996). Lipid
bodies in these cells are rapidly formed following treat-
ment with platelet-activating factor (PAF), nonesterified
fatty arachidonate, or other fatty acids (Bozza et al.,
1997; Bozza and Weller, 2001) and are induced in endo-
thelial cells by hypoxia (Scarfo et al., 2001). Unlike the
ER, which contains a lumen, the structure of lipid bodies

FIG. 3. Dendrogram showing phylogenetic relationships of COX
isozymes. Neighbor-joining methodology was used to calculate genetic
distances, and tree topology was confirmed by parsimony analysis. Cour-
tesy of Tilo Grosser, Ellina Cheskis, Michael A. Pack and Garret A.
FitzGerald.
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is less defined and may contain a central core of neutral
lipids surrounded by a monolayer of phospholipid, which
is thought to be derived from the cytosolic side of the ER
bilayer (Murphy and Vance, 1999). In addition to con-
taining COX-1, lipid bodies have also been shown to be
rich in other lipid-metabolizing enzymes (Bandeira-
Melo et al., 2001).

In addition to lipid bodies, COX-1 has been localized to
unusual filamentous structures in endothelial ECV304
cells (Liou et al., 2000), and COX-2 was localized to
caveolin-1-containing vesicles in bovine arterial endo-
thelial cells treated with phorbol ester (Liou et al., 2000)
or human fibroblasts treated with either phorbol ester or
IL-1 (Liou et al., 2001). COX-1 and COX-2 have been

FIG. 4. Comparison of plant PIOX enzymes from rice, Arabbidopsis thaliana, and tobacco with human COX-1. Some important conserved
sequences are shown in bold. The conserved tyrosine that functions as a tyrosyl radical and the conserved histidine that forms the proximal ligand
to heme are denoted by one and two asterisks, respectively.

FIG. 5. Crystallographic structures of ovine COX-1 (left) and murine
COX-2 (right) homodimers. The crystallographic structure of ovine
COX-1 was taken from Protein Data Bank file 1PRH and the murine
COX-2 structure was from file COX5 of the same source. Functional
domains: 1) membrane binding domain (yellow); 2) dimerization domain
(green); catalytic domain (blue) heme (red). The open cleft of the peroxi-
dase active site is observable at the top of each monomer. Glycosyl
residues are not shown.

FIG. 6. Priming of COX enzymes by formation of a tyrosyl radical.
Nascent COX enzymes are inactive and must be primed by binding and
oxidizing an endogenous oxidant (e.g., a lipid peroxide). In the process,
a ferryl-oxo-porphyrin radical is generated that abstracts an electron
from tyrosine 385 to produce the critical radical needed for cyclooxy-
genase activity. This radical is regenerated with each cyclooxygenase
cycle (see Fig. 7). The resulting ferryl-oxo heme is reduced to resting
state ferric heme by endogenous reductants.
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identified by a number of laboratories to traffic within
the nucleus following a variety of stimuli (Coffey et al.,
1997; Parfenova et al., 1997; Neeraja et al., 2003). How
extraluminal COX isozymes might structurally and en-
zymatically differ from their intraluminal counterparts
or result in differential targeting of prostaglandins (e.g.,
to the nucleus) is currently unknown.

E. Post-Translational Modification of Cyclooxygenases

COX-1 is glycosylated at three asparagines, whereas
COX-2 may be glycosylated at up to four asparagines.
(Nemeth et al., 2001; also see Fig. 2 for positions). Gly-
cosyl moieties are of the high mannose type. Glycosyla-
tion of asparagine 410 in COX-1 is essential for COX and
POX activities, probably by promoting proper protein
folding (Otto et al., 1993). This suggests that glycosyla-
tion is cotranslational rather than post-translational;
however, once COX-1 has folded, this glycosyl residue
can be removed by endoglycosidase treatment with little
to no effect on enzyme activity. COX-2 is frequently
observed in multiple glycosylated states that in Western
blots produce a characteristic COX-2 doublet or triplet
banding pattern. Three distinct glycoforms of COX-2

FIG. 7. Catalytic steps in cyclooxygenation of arachidonic acid. 1) Arachidonic acid is bound productively in the COX active site in an extended
L-shape placing carbon 15 in the correct orientation for abstraction of the pro S hydrogen by tyrosyl radical 385. 2) The arachidonyl radical localizes
at carbons 11 and 9 where oxygen attacks from the anterofacial side to form an endoperoxide. 3) the radical localized at carbon 15 is attacked by a
second molecule of oxygen. Reabstraction of hydrogen from the tyrosine 385 produces hydroperoxyl-containing PGG2 and regenerates the tyrosyl
radical.

FIG. 8. Contour of COX-1 and COX-2 cyclooxygenase active sites. The
solvent-accessible surfaces of the COX-1 and COX-2 active sites, with
important surrounding amino acid residues, are shown. Highlighted in
yellow on the left is the effect of isoleucine 523 on COX-1, which produces
two prominent “bulges” into the active site. These bulges prevent aro-
matic substituents of some COX-2-specific drugs from accessing the left-
ward side pocket shown. The effect of valine 523 in COX-2, highlighted in
yellow on the right, does not create these bulges and allows access of
coxibs into this pocket.
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have recently been characterized by mass spectrometry
(Nemeth et al., 2001) The function of these COX-2 gly-
cosylation states is unknown, but changes in glycosyla-
tion have been found in one case to accompany cell
transformation by a tumor virus (Evett et al.,1993).

F. Variants of Cyclooxygenase Isoenzymes

Recently it has become clear that the transcriptome
and proteome is significantly larger than the genome.
Much of the discrepancy is due to alternative splicing.
The first COX-1 splice variant was identified by Diaz in
1992 from a cDNA clone that contained the complete
coding region for human lung COX-1; however, the
cDNA contained an in-frame removal, due to alternative
splicing, of the last 111 base pairs encoded by exon 9.
This deletion eliminated the N-glycosylation site at res-
idue 409, which had previously been shown by others to
be essential for proper folding of the enzyme and for
enzyme activity. Differential expression of this variant
relative to COX-1 was observed following treatment of
human lung fibroblasts with transforming growth fac-
tor-�, IL-1�, TNF�, serum, and phorbol esters. Human
myometrium was found to express this transcript at low
levels that do not change during parturition (Moore et
al., 1999).

A second COX-1 variant, which lacks exon 1 and in-
stead contains part of intron 2, was identified (Kitzler et
al., 1995) in a rat tracheal cell line (EGV-6). This tran-
script was expressed at low levels; however, more than
90% of the COX-1 transcripts in this cell line are in this
variant form. Primary rat tracheal epithelial cells and
fibroblasts were also found to contain the variant tran-
script, but at only 1% of the level of COX-1 mRNA.
Because this transcript lacks exon 1, which contains the
initiating codon for translation, it has been considered to
encode a nonsense COX protein (Kitzler et al., 1995).
Interestingly, however, studies of the rat gastrointesti-
nal tract show differential expression of this variant
relative to COX-1 in aging stomach (Vogiagis et al.,
2000). Moreover, expression of this variant was elevated
in colorectal tumors, and its expression was reduced
following treatment with NSAIDs (Vogiagis et al., 2001).

Very recently, brain-specific splice variants have been
identified in dogs (Chandrasekharan et al., 2002). One of
these, termed by the authors COX-3, consists of the
COX-1 mRNA that retains intron-1. Intron-1 is small in
all mammalian COX-1 genes thus far characterized. In
dogs, it is 90 nucleotides in length and represents an
in-frame insertion into the portion of the COX-1 open
reading frame encoding the N-terminal hydrophobic sig-
nal peptide. The COX-3 variant produces protein con-
taining the encoded intron-1 sequence when expressed
in insect cells. The protein possesses reduced prosta-
glandin synthesis activity relative to COX-1, but anal-
gesic/antipyretic drugs such as acetaminophen and dipy-
rone preferentially inhibit this activity. Evolutionary
comparisons show that intron-1 is of similar size in all

species but is not always in frame as in canines. For
example, it is out of frame in humans and rodents and
would require additional mechanisms such as the use of
alternative splice sites, ribosomal frameshifting, or RNA
editing to make a functional protein (Chandrasekharan
et al., 2002; Dinchuk et al., 2003; and Simmons, 2003).

Other COX-1 splice variants recently identified en-
code PCOX-1 (partial COX-1) proteins (Chandrasekha-
ran et al., 2002). PCOX-1 variants exhibit in-frame de-
letion of exons 5 through 8. This deletion results in the
removal of 219 amino acids from the catalytic domain
corresponding to amino acids 119–337 in COX-1. Two
forms of PCOX-1 are known, PCOX-1a and PCOX-1b.
PCOX-1a contains intron-1 whereas this sequence is
removed by splicing in PCOX-1b.

The deleted portion of PCOX-1 proteins contains
structural helices HE, H1, H2, H3, H5, and part of H6,
which constitute part of the cyclooxygenase and peroxi-
dase catalytic sites. Consequently, PCOX-1 proteins do
not make prostaglandins (Chandrasekharan et al.,
2002); however, the critical proximal ligand to heme is
not deleted and, therefore, PCOX-1, like their distant
relatives PIOX and linoleate diol synthase, may be fatty
acid oxidases or isomerases. It is important to note that
the intron/exon placements in mammalian COX-1 and
COX-2 genes are strictly conserved except for intron-1 in
COX-1. COX-2 genes lack this intron. Therefore, it is
possible that a PCOX-2 protein exists that would be
analogous to PCOX-1b; however, a PCOX-2a could not
exist because COX-2 lacks the equivalent of intron-1 in
COX-1. Exons 2 through 5 and 7 in COX-1 and exons 2
through 4 and 6 in COX-2 genes all have the potential of
producing in-frame deletions if excised during pre-
mRNA splicing. Simultaneously skipping exons 6 and 8
in COX-1 or exons 5 and 7 in COX-2 transcripts also
produces in-frame deletions. Thus many different splice
variants of COX-1 and COX-2 can be generated by exon
skipping that produce proteins that potentially contain a
heme binding site.

In addition to the above splice variants that affect the
coding region of COX-1, a number of alternatively poly-
adenylated transcripts are known. COX-1 in some hu-
man cells and tissues (e.g., endothelial cells) is ex-
pressed as three transcripts of 2.8, 4.5, and 5.2 kb (Hla,
1996). The 2.8-kb transcript encodes COX-1 and is the
most abundant of these mRNAs. The 4.5-kb transcript
has been poorly characterized. The 5.2-kb transcript
arises by read-through of the consensus polyadenylation
site and termination at another consensus termination
site that is approximately 2.7 kb downstream (Plant and
Laneuville, 1999). The 5.2-kb transcript was expressed
at highest levels in human bladder and colon where its
level exceeded that of the 2.8-kb transcript. A 5.2-kb
COX-1 mRNA in cerebral cortex, other regions of the
forebrain, heart, and muscle can contain all or part of
intron-1 and is the human analog of the COX-3 mRNA in
dog (Chandrasekharan et al., 2002). In megakaryocytes,
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all three transcripts can be induced to different extents
by mitogens such as phorbol esters (Plant and Laneu-
ville, 1999). COX-1 in NIH3T3 cells is expressed as two
transcripts of 2.8 and �7.0 kb in size (Evett et al., 1993).
The 2.8-kb transcript encodes COX-1 and is greater than
10 times the abundance of the �7.0-kb transcript, which
has been poorly characterized. At least some of the
�7.0-kb transcript contains intron-1 and is analogous to
the 5.2-kb intron-1-containing transcript in humans (un-
published data). COX-1 variants are summarized in Fig.
9A, and COX-3 and PCOX-1a variants are diagrammed
in Fig. 9B.

COX-2 is expressed in many organisms as three alter-
natively polyadenylated transcripts of 4.2, 3.8, and 2.2
kb in size (Fig. 10). The 3.8- and 2.2-kb transcripts arise
from polyadenylation at cryptic nonconsensus sites con-
taining the sequence AUUAAA (Ristimaki et al., 1996;
Evanson, 2002). Noncoordinated expression of these
transcripts has been observed (Evanson, 2002). For ex-
ample, rat spermatogonial cells contain primarily a
2.8-kb COX-2 transcript, and COX-2 in these cells was
found to localize primarily within the nucleus (Neeraja
et al., 2003). Thus alternative 3�-untranslated regions
may serve to direct subcellular locations of COX isoen-
zymes.

In addition to variant COX mRNAs, which potentially
produce COX or PCOX proteins with altered or ex-
panded biological function, is the issue of mutations and
epigenetic (e.g., CpG methylation; Deng et al., 2002)
changes in COX genes or regulatory regions that may be
involved in disease states. Numerous COX-1 and COX-2
single nucleotide polymorphisms (SNPs) have been iden-
tified, and a more complete discussion of them has been
done by Ulrich et al. (2002) and Cipollone and Patrono
(2002). Silent and nonsilent SNPs have been identified
in COX coding regions, and SNPs of unknown function
have also been identified in COX introns, untranslated
regions, and upstream regulatory regions (Fritsche et
al., 2001; Cipollone and Patrono, 2002; Ulrich et al.,
2002; Halushka et al., 2003; Konheim and Wolford,
2003).

Because of the central role that COX-1 and COX-2
play in physiological and pathophysiological processes
such as inflammation and cancer, it is anticipated that
SNPs in COX genes may result in altered susceptibility
to diseases. Although the genetic/epidemiological data
are at present limited, early studies suggest this to be
the case. Lin et al. (2002) associated a Val511Ala poly-
morphism found in some African Americans with a po-
tential decreased susceptibility to colon cancer (odds
ratios 0.56 and 0.67 in two separate study populations).
Other SNPs found in the COX-2 promoter region and in
intron-6 have been associated with a higher prevalence
of type 2 diabetes mellitus in Pima Indians (Konheim
and Wolford, 2003). Patients heterozygous for two single
nucleotide changes in the COX-1 gene (A842G/C50T)
demonstrated greater inhibition of platelet COX activity

by aspirin (Halushka et al., 2003). Finally, a SNP (�756
G�C) in the COX-2 gene promoter has been associated
with lower promoter activity. Patients carrying this al-
lele had lower C-reactive protein levels 1 to 4 days after
coronary artery bypass graft surgery (Papafili et al.,
2002). Thus, future studies of COX variants and mu-
tants are likely to yield new and exciting insights into
the roles of COX gene products.

G. Cyclooxygenase Activation by Endogenous
Compounds

Endogenous radicals are required to activate newly
made COX holoenzymes to form the enzymatically cru-
cial tyrosyl radical at Tyr385. The precise identity of the
endogenous activator(s) is presently unknown. Lipid
peroxides and peroxynitrite have both been implicated
as the oxidants that oxidize ferric heme (FeIII) to a
ferryl-oxo (FeIV) protoporphyrin radical. Significant de-
bate has focused on how this activation occurs and
whether COX enzymes need to be activated after each
cyclooxygenation catalytic cycle. However, the prepon-
derance of evidence suggests that oxidation of tyrosine
385, with concomitant reduction of the protoporphyrin
radical to FeIV heme generates the Tyr385 radical. The
catalytic cycle, in which this crucial radical is formed,
and the relationship of Tyr385 radical formation to POX
and COX activities is illustrated in Fig. 6. Current data
suggest that, once made, the radical is typically regen-
erated with each catalytic event (as shown in Figs. 6 and
7), and thus, the COX active site needs only one initial
activation to be fully catalytically active. This model
predicts that, under some circumstances, the peroxidase
active site can act independently of the COX active site,
a phenomenon that occurs when the COX site is inhib-
ited by NSAIDs (Mizuno et al., 1982). However, this
model also predicts that the COX site requires the heme
of the peroxidase active site for its initial activation and
only thereafter can act independently of the peroxidase
active site. Consistent with this model has been the
creation of site-directionally derived mutants of COX
that possess only the peroxidase or cyclooxygenase ac-
tivities of COX (Goodwin et al., 2000). A lag time in the
activation of COX activity was observed in these POX
mutants, suggesting that these mutant enzymes, and
perhaps other naturally occurring enzymes such as PI-
OXs, require only sufficient POX activity to activate the
enzyme. Such enzymes would be expected to exhibit
delayed kinetics of activation compared with COXs,
which have much more efficient POX active sites. Struc-
tural characteristics of COX isoenzymes have recently
been reviewed in greater detail elsewhere (Garavito et
al., 2002).

H. Enzyme Autoinactivation

COX -1 and COX-2 show different reactivities to lipid
substrates (Chen et al., 1999). COX-2 but not COX-1 has
been reported to exhibit positive cooperativity in AA
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FIG. 9. COX-1 and known variants. A, structure of the COX-1 gene (length of introns not drawn to scale). Retention of intron-1 or parts thereof (denoted
by one asterisk) gives rise to canine COX-3 and is found in some canine PCOXs. Retention of part of intron-2 is found in some human COX-1 transcripts
(unpublished data). This intron is analogous to intron-1 in COX-2 transcripts that can be retained in a signal transduction-responsive fashion in chicken
embryo fibroblasts (Xie et al., 1991). Skipping of exons 3–8 (denoted by 2 asterisks) can produce a PCOX protein. Use of a cryptic splice site in exon 9 (denoted
by three asterisks) produces an inactive COX variant in humans (Diaz et al., 1992). Cryptic splicing has been detected in exon 10 (denoted by four asterisks;
unpublished data) in humans resulting in a truncated open reading frame. Alternative polyadenylation (denoted by five asterisks) produces COX-1 transcript
ranging from 2 to 6 through �7 kb in size. In humans and rodents, retention of intron-1 is frequently coupled to alternative polyadenylation. Alternative
polyadenylation is also observed in COX-2 transcripts. B, diagram of the functional domains of COX-1 and COX-2 and the effects of alternative splicing in
the insertion of intron-1 in canine COX-3 and PCOX-1b and deletion of 5 to 8 in canine PCOX-1a.
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binding (Swinney et al., 1997). COX-2 has also been
shown to be more catalytically efficient in oxidizing
some 18-carbon chain fatty acids and eicosapentaenoic
acid than COX-1 (Laneuville et al., 1995). Both enzymes
show relatively short catalytic life spans (less than 1–2
min) when exposed to exogenous AA at concentrations
that approach Vmax. One explanation for this phenome-
non has been that these isozymes generate arachidonyl
peroxides and other reactive species such as malondial-
dehyde, which could attack the enzyme inactivating it.
More likely, however, is that in the course of the cata-
lytic cycle the Tyr385 radical or tyrosyl radicals at posi-
tions other than 385 result in internal protein cross-
linking.

I. Synthetic Cyclooxygenase Inhibitors—Nonsteroidal
Anti-Inflammatory Drugs

NSAIDs have been prominent analgesic/anti-inflam-
matory/antipyretic medications since 1898 when aspirin
was first marketed. COX-2-selective drugs were intro-
duced in 1999. All NSAIDs act as inhibitors of the cyclo-
oxygenase active site of COX isozymes. Important mech-
anistic differences in the actions of individual NSAIDs
with the COX active site are complex (Llorens et al.,
2002).

1. Aspirin. Of the NSAIDs in medical use, only aspi-
rin is a covalent modifier of COX-1 and COX-2. The
crystallographic studies of Garavito and colleagues (Pi-
cot et al., 1994; Loll et al., 1995) demonstrated why this
drug so efficiently acetylates serine 530 of COX-1. Like
other NSAIDs, aspirin diffuses into the COX active site
through the mouth of the channel and traverses up the
channel to the constriction point formed by Arg120,
Tyr355, and Glu524. At this point in the channel, the
carboxyl of aspirin forms a weak ionic bond with the side
chain of Arg 120, positioning aspirin only 5 Å below
Ser530 and in the correct orientation for transacetyla-
tion (Loll et al., 1995). Because the catalytic pocket of
the channel is somewhat larger in COX-2 than in
COX-1, orientation of aspirin for attack on Ser530 is not
as good, and transacetylation efficiency in COX-2 is re-
duced. This accounts for the 10- to 100-fold lowered
sensitivity to aspirin of COX-2 in comparison to COX-1.

2. Competitively Acting Nonsteroidal Anti-Inflamma-
tory Drugs. Other NSAIDs besides aspirin inhibit
COX-1 and COX-2 by competing with AA for binding in
the COX active site. However, NSAIDs significantly dif-
fer from each other in whether they bind the COX active
site in a time-dependent or independent fashion.

FIG. 10. Alternative polyadenylation variants of COX-2. Upper inset: Northern blot of COX-2 mRNA in human A541 cells treated with cytokines
and 500 �M diclofenac demonstrating at least three COX-2 polyadenylation variants (pA1–pA3). Lower inset: diagram representing the difference in
length of the 3�-untranslated region of these variants.
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a. Time Dependence. NSAIDs differ dramatically
with regard to how quickly they productively bind in the
COX active site and how quickly they come out of the
COX channel (Marnett and Kalgutkar, 1998). Some
NSAIDs have very rapid on and off rates, such as ibu-
profen (Selinsky et al., 2001). Such drugs do not show
time dependence. They inhibit COX activity essentially
instantaneously after addition of the NSAID, and they
readily wash out of the COX active site when the NSAID
is removed from the environment of the enzyme. In
contrast, many NSAIDs such as indomethacin and di-
clofenac are time-dependent. They require typically sec-
onds to minutes to bind the COX active site. Once bound,
however, these drugs typically have low off-rates that
may require hours for the NSAID to wash out of the
active site. Time-dependent NSAIDs compete very
poorly with AA in instantaneous assays of COX activity.

Time-dependent NSAIDs bind the COX active site
first in a loose interaction and then in a productive tight
complex. The rate-limiting step in drug binding is the
formation of the tight binding conformation of the
NSAID within the COX channel. Of particular impor-
tance to this second step in NSAID binding is the con-
striction point created by the hydrogen bonding network
of Arg120, Tyr355, and Glu524 and the proposed diffi-
culty for some NSAIDs to traverse it. A plausible sce-
nario is that time-dependent NSAIDs likely require con-
formational heterogeneity in the constriction site caused
by molecular breathing of the polypeptide to enter into
the upper portion of the catalytic channel. One open
state of the COX-2 enzyme has been identified crystal-
lographically (Luong et al., 1996). An open state of the
COX-1 enzyme that allows NSAIDs to pass the constric-
tion point is likely to be transient since crystallographic
studies show no difference in COX-1 conformation bound
to time-dependent or nondependent NSAIDs (Selinsky
et al., 2001).

Once having passed through the constriction site into
the catalytic pocket, carboxyl-containing NSAIDs form a
salt bridge between the carboxylate of the NSAID and
the guanidinium moiety of Arg120 in COX-1 (Loll et al.,
1995; Mancini et al., 1995). The ionic bond formed, how-
ever, is stronger for competitively acting NSAIDS than
for aspirin. Hydrophobic interactions between the aro-
matic ring(s) of NSAIDs and the hydrophobic amino
acids lining the channel further stabilize binding. The
sum of these interactions results in tight binding of
many NSAIDs at the constriction point of the channel,
where they totally block entry of AA. Cocrystallization
studies have been performed for flurbiprofen and COX-1
and COX-2 as well as indomethacin and COX-1, which
define the precise binding interactions of carboxyl-con-
taining NSAIDs in the COX binding site (Loll et al.,
1994, 1996; Picot et al., 1994).

b. Selective Cyclooxygenase Inhibitors. Celecoxib
(Celebrex) and rofecoxib (Vioxx) were marketed in 1999
as the first NSAIDs developed as selective COX-2 inhib-

itors. Other NSAIDs including meloxicam (Mobic),
nimesulide, and etodolac (Lodine), which were marketed
earlier in Europe or the United States as safer NSAIDs,
were found after the discovery of COX-2 to be preferen-
tial inhibitors of this enzyme (Fig. 11). Currently, second
generation COX-2 inhibitors, such as valdecoxib (Bex-
tra; Smith and Baird, 2003) and etoricoxib (Hunt et al.,
2003) are in use or are coming to market as are other
COX-2-selective agents such as lumiracoxib (Ding and
Jones, 2002). NS398 is a particularly important COX-2
inhibitor that is not in clinical use but is commercially
available and, therefore, is widely used in pharmacology
studies. Celecoxib and rofecoxib are diaryl compounds
containing a sulfonamide and methylsulfone, respec-
tively, rather than a carboxyl group (Fig. 11). Each of
these compounds is a weak time-independent inhibitor
of COX-1, but a potent time-dependent inhibitor of
COX-2. Like time-dependent carboxyl-containing
NSAIDs, time dependence for celecoxib and rofecoxib
requires these compounds to enter and be stabilized in
the catalytic pocket (Gierse et al., 1999). However, be-
cause these drugs lack a carboxyl group, stabilization of
binding for both of these drugs does not require Arg120.
Instead, a sum of hydrophobic and hydrogen bonding
interactions stabilizes binding. Of particular importance
is penetration of the sulfur-containing phenyl ring into
the hydrophobic outpocketing in the COX-2 catalytic
pocket shown in Fig. 8 (Kurumbail et al., 1996).

The structural basis for NS398 selectivity toward
COX-2 is unclear, since its sulfonamide moiety is coor-
dinated in the COX active site by ion pairing, just like
carboxyl moieties in nonselective NSAIDs (Marnett and
Kalgutkar, 1998).

3. Analgesic/Antipyretic Drugs. Acetaminophen
(paracetamol in the United Kingdom) and dipyrone (Fig.
12) are important pain and fever relievers that lack
anti-inflammatory activity. Acetaminophen is used pri-
marily in North America and Western Europe whereas
dipyrone is used extensively in Mexico, South America,
Eastern Europe, and Africa. Although older than aspirin
and used extensively for decades, acetaminophen has no
certain mechanism of action. Flower and Vane (1972)
proposed a central action for acetaminophen of inhibit-
ing COX activity in brain. Indeed, neither acetamino-
phen nor dipyrone is acidic and both agents cross the
blood-brain barrier well, but acetaminophen is a poor
inhibitor of purified COX enzymes (Ouellet and Percival,
2001). Marginal inhibition of COX-1 can be achieved by
performing inhibition studies at low arachidonate levels
in the presence of low oxidant tone (Ouellet and Per-
cival, 2001). Even under these conditions COX-2 was not
inhibited at physiological concentrations. In whole cells,
COX inhibition by acetaminophen has been observed in
microglia (Fiebich et al., 2000; Greco et al., 2003), plate-
lets, and leukocytes (Sciulli et al., 2003). Oates et al.
(Boutaud et al., 2002) showed that in human umbilical
vein endothelial cells in culture, acetaminophen inhibits
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COX-2 with an IC50 of 66 �M, well within the therapeu-
tic range in humans. It is unclear what factors may
make COX susceptible to inhibition by acetaminophen
in these whole cells, although changes in oxidant tone
have been proposed (Boutaud et al., 2002). Recently,
Chandrasekharan et al. (2002) identified a COX-1 vari-
ant, COX-3, that was sensitive to inhibition by acet-
aminophen and dipyrone in whole insect cells expressing
the protein. The variant was identified in dog brain and
may represent a central target of analgesic/antipyretic
drugs.

Salicylate has analgesic, antipyretic, and anti-inflam-
matory activity, but unlike aspirin, is a poor inhibitor of
COXs in vitro. In this regard, it resembles acetamino-
phen. Mitchell et al. (1997) found that salicylate does
inhibit COX activity when substrate concentrations are
maintained at low levels, similar to the findings of Ouel-
let and Percival (2001) and Oates and colleagues (2000)

for acetaminophen. Recently Oates and Marnett have
proposed that acetaminophen and salicylate both inhibit
COX by redox mechanisms with sodium acetaminophen
acting as a peroxidase cosubstrate and sodium salicylate
acting at the cyclooxygenase active site (Aronoff et al.,
2003).

J. Modulation of Cyclooxygenase and Peroxidase
Activity

An important area of inquiry is whether cyclooxygen-
ase and peroxidase enzyme activities of the COX dimer
can be regulated in the cell. Forms of such regulation
include increasing or decreasing Vmax or Km of AA oxi-
dation, altering substrate specificity, or channeling sub-
strate either between the two active sites in the COX
enzyme or between the COX enzyme and downstream
isomerases or oxidoreductases.

1. Nitric Oxide. As described above, NO may act
through generation of peroxynitrite as the endogenous
oxidant that activates nascent COX isozymes to create
the tyrosyl radical needed for catalytic activity. How-
ever, NO has been reported in different studies to in-
crease (Salvemini et al., 1993) or decrease (Swierkosz et
al., 1995) COX-2 activity, a phenomenon that has been
reviewed elsewhere (Salvemini, 1997). For the most
part, how NO functions to modulate catalytic activity is
unknown. Modulation of activity by NO could occur by
regulating other enzymes, including binding of NO to
heme or nitration of cysteines or tyrosines via formation
of peroxynitrite. Direct binding to heme is unlikely in
COX-1 since NO has been demonstrated to have a low
affinity (Kd � 1 mM) for ferric heme in this isozyme (Tsai
et al., 1994).

Consistent with a role for NO in regulating COX-2 is
that inducible NO synthase is frequently coregulated
with this enzyme (Swierkosz et al., 1995). In vitro stud-
ies have suggested cross-talk (defined as codependence
of both activities to a biological phenomenon) between
COX and NO; however, selective COX-2 and inducible
NO synthase inhibitors in rats failed to find cross-talk in
vivo in rats exposed to endotoxin, which induces both
enzymes in monocytes and tissues (Hamilton and
Warner, 1998). Recently, Abramson and colleagues

FIG. 11. Structural comparison of selected commercially available
COX-2 selective inhibitors.

FIG. 12. Structural comparison of acetaminophen and dipyrone.
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(Clancy et al., 2000) have reported that NO activates
COX-1 in J774.1 and mouse fetal lung fibroblasts and
inhibits COX-2 in the same cell types. NO inhibited
COX-2 by nitration of Tyr385. The mechanism by which
COX-1 is stimulated by NO was not determined; how-
ever, the finding of a direct mechanism of NO action
through nitration of Tyr385 suggests a potentially im-
portant role of NO synthase in regulating COX enzymes.
In addition to modulation of COX activities by NO, NO
levels may be influenced by COX through consumption
of NO, which can act as a reducing cosubstrate for COX
(O’Donnell et al., 2000).

2. Substrate Channeling and Enzyme Coupling. The
present model for PGH2 synthesis requires PGG2 to exit
the mouth of the COX channel and to diffuse by random
motion to a POX site on the same or a neighboring
enzyme for reduction to PGH2. There is no obvious chan-
nel within the COX monomer through which PGG2 could
travel from the COX to the POX site. Few studies have
addressed the concept of channeling PGG2 from the COX
to the POX active site.

Of current interest is whether COX isozymes are cou-
pled with upstream phospholipases and downstream
synthases to cause selective production of specific eico-
sanoid isomers. Many examples of coupling have been
reported (e.g., Kampfer et al., 2003), but no universal
coupling relationships between COXs and phospho-
lipases or isomerases have been fully defined. Func-
tional coupling of phospholipase A2S and COXs has been
recently reviewed (Murakami et al., 2002a). Coupling
depends on cell types and stimulation status of cells.
Coupling also may involve intracellular translocation of
isomerases (Ueno et al., 2001) or distinct subcellular
locations of COXs (Schade et al., 2002). Cytosolic pros-
taglandin E synthase has been reported to be predomi-
nantly coupled to COX-1 and membrane-associated
prostaglandin E synthase to COX-2 (Murakami et al.,
2002b). Wu and colleagues (Liou et al., 2000) have
shown that PGI synthase colocalizes with COX-1 and
basal levels of COX-2 in bovine endothelial cells grown
in 10% fetal bovine serum; however, PGI synthase did
not colocalize with COX-2 induced with phorbol 12-my-
ristate13-acetate in the same cells. The mechanism by
which substrate might be channeled between enzymes
that are colocalized is presently undefined.

3. Cyclooxygenase-Binding Proteins. Of current in-
terest is whether other proteins may bind to and regu-
late COX isozymes. The apoptosis- and autoimmune dis-
ease-associated protein nucleobindin (Nuc) was shown
to bind COX-1 and COX-2 fragments in the yeast 2-hy-
brid system. Amino acids 381–500 represented the
shortest fragment of COX needed to bind Nuc. Binding
between Nuc and COX was further substantiated by
antibody competition experiments and other studies
(Ballif, 1996); however, coimmunoprecipitation studies
of COX-1 and COX-2 with Nuc expressed in insect cells
showed that only unglycosylated or hypoglycosylated

forms of COX-2 bind tightly to Nuc (unpublished data),
suggesting that Nuc does not tightly bind to glycosy-
lated, enzymatically active forms of COX. Instead, glu-
tathione S-transferase-pull-down assays suggest that
NEFA (DNA-binding EF-hand acidic amino acid-rich
region) (Barnikol-Watanabe et al., 1994), a protein
closely related to Nuc, may be protein that binds to
glycosylated COX-1 and COX-2.

II. Pharmacological Actions of Cyclooxygenase
Isozyme-Generated Prostanoids

A. Prostaglandin Receptors

Prostaglandin receptors are designated by the letter
“P” and a prefix of “D”, “E”, “F”, “I”, or “T” to signify
preference for prostaglandins D, E, F, I, or thromboxane,
respectively. To date, four subtypes of EP receptors have
been identified, EP1–EP4.

In addition to classical prostanoids that act via
plasma membrane-derived G-protein-coupled receptors,
several COX products such as PGJ2, 15-deoxy- 12,14-
PGJ2 (15d-PGJ2) and PGA2 can activate nuclear recep-
tors of the PPAR class (Forman et al., 1995). Although it
is not clear whether these classes of compounds are
generated under physiological conditions and thus act as
physiologically relevant inducers of PPAR� receptors,
they are stimulators of this nuclear receptor pathway
(Forman et al., 1995). Recent studies show that 15d-
PGJ2 is produced from the COX-2 pathway (Shibata et
al., 2002). 15d-PGJ2 is found in chronic inflammatory
exudates of animal models during the late resolution
phase (Gilroy et al., 1999). In this study, the authors
showed that treatment with COX-2 inhibitors inhibited
the appearance of 15d-PGJ2, suggesting that it is pro-
duced from the COX-2 pathway (Gilroy et al., 1999).
Recent studies show that in addition to stimulating the
PPAR� receptors, these nuclear-acting prostanoid li-
gands inhibit the I�B kinase activity and thereby block
the NF�B transcription factor pathway (Rossi et al.,
2000). Indeed, treatment of vascular endothelial cells
and ECV304 bladder cancer cells resulted in cellular
apoptosis that requires the PPAR� activity, suggesting
that nuclear-acting prostanoids may act to down-regu-
late angiogenesis (Bishop-Bailey and Hla, 1999). Indeed,
PPAR�-activating prostanoids, such as 15d-PGJ2 induce
synoviocyte apoptosis and inhibit the development of
adjuvant-induced arthritis in animal models (Kawahito
et al., 2000). These data raise the possibility that the
COX pathway may induce anti-angiogenic effects by nu-
clear-acting prostanoids.

B. Inflammation

Both PGE2 and PGI2 have been found in the synovial
fluid from knee joints of arthritic patients (Higgs et al.,
1974; Brodie et al., 1980; Bombardieri et al., 1981). In
the rat model of carrageenan-induced paw edema, PGE2
is the major PG involved in inflammation and pain,
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since antibodies to PGE2 inhibit both symptoms in this
rat model (Mnich et al., 1995; Portanova et al., 1996).
Carrageenan-induced hyperalgesia in the rat paw was
also reversed by administration of SC58635 (now known
as celecoxib), a selective COX-2 inhibitor, demonstrating
that PGE2 synthesis by the COX-2 enzyme is responsi-
ble for inflammatory symptoms in this animal model
(Zhang et al., 1997). PGI2 has also been detected in
inflammatory lesions, and there may well be species
differences, because inflammation is completely sup-
pressed in mice in which the IP receptor for PGI2 has
been deleted (Murata et al., 1997). It is likely, therefore,
that both PGE2 and PGI2 contribute to the development
of inflammatory erythema and pain (Higgs et al., 1978).

Unexpectedly, in COX-2 gene-deleted mice the inflam-
matory response was not affected. However, only an
acute inflammatory response was tested, which almost
certainly involved COX-1 rather than COX-2 (Langen-
bach et al., 1995). The cyclopentenone PGs may be anti-
inflammatory since 15-deoxy-PGJ2 seems to resolve car-
rageenan-induced pleural inflammation in rats (Gilroy
et al., 1999; Kawahito et al., 2000; Rossi et al., 2000).
This anti-inflammatory activity may be mediated, at
least in part, by inhibition of I�B kinase (Straus et al.,
2000).

C. Pain

Prostaglandin E2 does not cause pain when applied to
an unprotected blister base on a human forearm, but
greatly potentiates the pain induced by pain-producing
mediators such as bradykinin or histamine (Ferreira,
1972). Therefore, Ferreira concluded that the pain-pro-
ducing action of inflammatory mediators such as brady-
kinin or histamine was increased when PGs sensitized
chemical receptors on primary afferent nerve terminals.
PGs are therefore hyperalgesic. To produce its hyperal-
gesic action, PGE2 released during the inflammatory
response or by other trauma, lowers the activation
threshold of tetrodotoxin-resistant sodium channels on
sensory neurons (England, 1996). PGI2 rather than
PGE2 may be involved in short-lasting hyperalgesia
since it was more potent than PGE2 in producing hyper-
algesia in the rat and dog models (Ferreira et al., 1978).
PGI2 is mainly responsible for the stretching response to
an intraperitoneal (i.p.) injection of zymosan in mice
(Doherty et al., 1987), and IP receptor-deficient mice
showed greatly reduced nociceptive responses to i.p. ad-
ministration of dilute acetic acid (Murata et al., 1997).
The stretching response to acetic acid is mediated
mainly by COX-1, since it is abolished in COX-1�/� mice
(Ballou et al., 2000). Although the major PG involved in
the stretching response is PGI2, stretching responses to
acetic acid or phenylbenzoquinone are reduced by 50% in
mice with a deleted EP1 receptor. This provides evi-
dence that PGE2 as well as PGI2 mediates nociceptive
responses to these hyperalgesic agents (Stock et al.,

2001). Thus, both PGE2 and PGI2 can sensitize nocicep-
tors on sensory nerve terminals to painful stimulation.

Several studies, however, suggest that agonists for the
IP receptor can activate sensory neurons in the absence
of any other nociceptive stimuli. For example, the stable
prostacyclin analogs, carbaprostacyclin and iloprost,
produce stretching responses when injected i.p. into
mice (Doherty et al., 1987; Berkenkopf and Weichman,
1988; Akarsu et al., 1989). In addition, PGI2 and cica-
prost increased spontaneous activity and mechanically
evoked discharges of articular mechanonociceptors in
the rat ankle joint arthritis model (Birrell et al., 1991;
McQueen et al., 1991). Infusions of iloprost or cicaprost
into patients suffering from vascular occlusive disease
cause pain at the infusion site and headaches are a
frequent side effect of this treatment (Shindo et al.,
1991). A high density of IP receptors have been found on
sensory neurons. Binding sites for [3H]iloprost were ob-
served in the rat dorsal root ganglion and the dorsal
horn of the spinal cord (Matsumura et al., 1995; Pierce
et al., 1995). In the mouse dorsal root ganglion, almost
40% of neurons demonstrated binding for IP receptor
mRNA (Oida et al., 1995). IP receptors in sensory neu-
rons are linked to the activation of adenyl cyclase and
phospholipase C and can thus modulate the activity of
ion channels and neurotransmitter release through ac-
tivation of protein kinases A and C (Hingtgen et al.,
1995; Smith et al., 1998b).

D. Fever

Fever is caused by PGE2 released by inflammatory
mediators from endothelial cells lining the blood vessels
of the hypothalamus (Cao et al., 1998). Bacterial LPS
from infecting organisms, or circulating IL-1, stimulate
the expression of COX-2 and of PGE synthase in endo-
thelial cells that constitute the blood-brain barrier (Ek
et al., 2001; Samad et al., 2001). PGE2 generated by PGE
synthase diffuses out of the endothelial cells into the
organum vasculosum lamina terminalis (OVLT) region
of the hypothalamus, which is responsible for controlling
fever. The pyretic action of PGE2 is mediated by the EP3
receptor, since mutant mice lacking this receptor do not
develop fever after administration of PGE2, IL-1, or LPS
(Ushikubi et al., 1998). Pyrexia-producing PGE2 is
formed by COX-2 for selective COX-2 inhibitors, such as
rofecoxib, abolish fever in several species, including hu-
mans (Li et al., 1999; Schwartz, 1999), and LPS fails to
raise the core temperature of COX-2�/� mice (Li et al.,
1999). Although COX-2 is primarily involved in the fever
response to LPS, source components of this response are
dependent on COX-1 (Zhang et al., 2003)

E. Immune System

Mouse macrophages stimulated with inflammatory
mediators to induce COX-2 release PGE2 and PGI2,
whereas stimulated human monocytes and macro-
phages secrete large amounts of PGE2 together with
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TXA2 (Tripp et al., 1985; Fels et al., 1986). Neutrophils
make moderate amounts of PGE2, whereas mast cells
produce almost exclusively PGD2 (Stenson and Parker,
1983). No prostanoids appear to be made by lympho-
cytes, although both COX-1 and COX-2 have been de-
tected in these cells (Pablos et al., 1999). Release of
PGE2 by macrophages may act as a negative feedback
control mechanism, reducing further activation through
increase of cAMP thus resulting in inhibition of immune
function.

PGE2 also inhibits IL-2 and interferon � (IFN�) pro-
duction from T lymphocytes (Betz and Fox, 1991) and
IL-1 and TNF� release from macrophages (Kunkel et al.,
1986a,b, 1988); however, immature cells of the immune
system are stimulated by PGE2. For example, PGE2
induces immature thymocytes and B lymphocytes to
differentiate and acquire the functional characteristics
of mature cells (Parker, 1986).

It has been suggested that PGE2 produced by tumor
cells accounts for the depression of the immune system
associated with cancer. Large amounts of PGs are pro-
duced by certain tumor cells (Bennett et al., 1977),
which induce a generalized state of immunodeficiency
(Plescia et al., 1975). This immunosuppression was pre-
vented in tumor-bearing mice by inhibitors of PG syn-
thesis such as indomethacin (Pollard and Luckert,
1981). Treatment of rheumatoid arthritis with aspirin-
like drugs leads to inhibition of PG formation and thus
to removal of the immunosuppressant effect of these
eicosanoids. Removal of immunosuppression may be one
of the factors responsible for the cancer-inhibiting action
of the NSAIDs. Another consequence of removing the
suppression of immune processes by PGs may be the
enhancement of cartilage breakdown seen with NSAIDs
in vitro and in vivo (Pettipher et al., 1988; Desa et al.,
1989).

F. Gastrointestinal Tract

PG synthesis can be demonstrated to occur in every
part of the gastrointestinal tract. In rat tissues, using
vortex generation, the rank order of PG synthesis, as
determined by bioassay techniques, was greatest in gas-
tric muscle and forestomach, followed by gastric mucosa,
colon, rectum, ileum, cecum, duodenum, jejunum, and
esophagus (Whittle and Salmon, 1983). PGE2 contracts
gastrointestinal smooth muscle through stimulation of
smooth muscle EP1 receptors.

Prostanoids are “cytoprotective” in the gastrointesti-
nal tract, as strikingly demonstrated by the finding in
rat that gastric damage induced by topical application of
strong acids, hypertonic solutions or ethanol, could be
reduced by coadministration of various PGs (Robert et
al., 1967, 1979; Miller, 1983). The mechanism of the
cytoprotective action is complex and depends on a com-
bination of several mechanisms.

1. Both PGE2 (acting on the EP3 receptor) and PGI2
(acting on the IP receptor) reduce secretion of gastric

acid, even histamine-stimulated acid secretion, by the
parietal cells of the stomach. This action is species-
dependent since PGI2 is more active than PGE2 in anes-
thetized rat, conscious dog, and monkey, whereas PGE2

is a more potent inhibitor of acid secretion in the stom-
ach of the anesthetized dog (Robert et al., 1977, 1979;
Gerkens et al., 1978; Whittle et al., 1978; Konturek et
al., 1980; Shea-Donohue et al., 1982).

2. Intravenous infusions of PGE2 or PGI2 exert a di-
rect vasodilator action on the gastric mucosa (Konturek
et al., 1980). Increase in gastric mucosal blood flow is
obviously beneficial in maintaining the functional integ-
rity of the gastric tissue (Whittle et al., 1978).

3. PGE2 is synthesized by epithelial and smooth mus-
cle cells in the stomach, and intragastric administration
of PGE2 to humans stimulates the release of viscous
mucus (Johansson and Kollberg, 1979), which could play
a defensive role against mucosal injury (Allen and Gar-
ner, 1980) by gastric acid. Other than providing a phys-
ical barrier, mucus may act to create an unstirred layer
of secreted bicarbonate on the epithelium (Bahari et al.,
1982) and hence help to neutralize hydrogen ions diffus-
ing back from the lumen into the mucosa. PGE2 stimu-
lates bicarbonate secretion via the EP3 receptor, thus
application of acid induces more severe damage to the
stomach mucosa in EP3�/� mice than in wild-type ani-
mals (Takeuchi et al., 1999).

Most surprising has been the finding that animals
without the COX-1 gene did not spontaneously develop
stomach ulcers (Langenbach et al., 1995). This has been
explained by postulation of an adaptation process
whereby increased production of nitric oxide or calcito-
nin gene-related peptide may have taken over the cyto-
protective role of the absent PGs. An alternative expla-
nation is that both COX-1 and COX-2 may be required
for gastrointestinal mucosal defense. COX-1�/� or COX-
2�/� mice were more susceptible to colonic injury with
dextran sodium sulfate than wild-type mice, but the
administration of a selective COX-2 inhibitor exacer-
bated the mucosal injury with dextran sodium sulfate in
COX-1�/� mice (Morteau et al., 2000). Similarly, neither
the selective COX-1 inhibitor, SC-560, nor the selective
COX-2 inhibitor, celecoxib, administered to rats pro-
duced gastric damage, even though SC-560 reduced both
gastric PGE2 synthesis and gastric blood flow; however,
the combination of SC-560 with celecoxib resulted in
gastric erosions in all rats. Celecoxib, but not SC-560,
increased leukocyte adherence to the vascular endothe-
lium of the gastrointestinal microcirculation. Thus, it
appears that inhibition of the activity of both COX-1 and
COX-2 is required to produce gastric damage (Wallace et
al., 2000). This work was confirmed by Gretzer et al.
(2001) who showed that cotreatment of rats with SC-560
and the COX-2-selective inhibitor, rofecoxib, induced se-
vere gastric lesions.
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G. Cardiovascular System

Various prostanoids are secreted by vascular cells,
including PGI2, PGE2, and PGF2�, among others. In
addition, cells in the vascular wall respond to various
prostanoids (FitzGerald et al., 1983). The major prosta-
noid secreted by endothelial cells is PGI2, as the prosta-
cyclin synthase enzyme is enriched in this cell type. This
prostanoid binds to the IP receptors on vascular smooth
muscle cells and inhibits vascular contraction (FitzGer-
ald et al., 1983). The IP receptor couples to the Gs pro-
tein and increases intracellular cAMP concentrations,
thus antagonizing the contractile agonists and inhibit-
ing the mitogen-activated protein kinase pathway
(FitzGerald and Patrono, 2001). In platelets, the IP re-
ceptor signaling antagonizes the aggregation response
and thus inhibits thrombosis. PGI2 synthesis by the
COX pathway is important in normal control of vascular
homeostasis and thrombosis. Interestingly, an unex-
pected role of PGI2 in the control of the inflammatory
process was elucidated by the deletion of the IP receptor
in knockout mice (Murata et al., 1997). This is probably
related to the ability of PGI2 to induce vascular relax-
ation, which is important in the increased blood flow
that occurs during inflammation. PGE2 and PGF2�, in
contrast to PGI2 can induce either vasoconstriction or
vasorelaxation, depending on the vascular bed (FitzGer-
ald et al., 1983). These effects are mediated by specific
expression of the respective receptor subtypes on the
vascular smooth muscle cells (FitzGerald et al., 1983).
These findings indicate that the products of the COX
pathway mediate complex and critical homeostatic in-
teractions in the vessel wall.

PGE2 can also potently relax vascular smooth muscle
contributing to the characteristic vasodilatation (via the
EP2 receptor) leading to the erythema seen in acute
inflammation (Solomon et al., 1968). This increases
blood flow through inflamed tissues and thus augments
the extravasation of fluid, facilitating edema formation
(Williams and Peck, 1977). EP2 receptors generally me-
diate arterial dilatation and are also involved in salt-
sensitive hypertension. An infusion of PGE2, normally
hypotensive, raised blood pressure in EP2�/� mice,
whereas EP2�/� mice fed a high salt diet became hyper-
tensive. There was no change in systolic blood pressure
of control animals on a high salt diet (Kennedy et al.,
1999).

Blood platelets contain only COX-1, which converts
AA to the potent pro-aggregatory and vasoconstrictor
eicosanoid TXA2, the major COX product formed by
platelets. TXA2 has a half-life at body pH and tempera-
ture of 30 s, degrading to inactive TXB2 (Needleman et
al., 1976). It was proposed in 1976 that PGI2 and TXA2

represent the opposite poles of a homeostatic mechanism
for regulation of hemostasis in vivo (Moncada et al.,
1976). Stimulation of the TP receptor on platelets leads
to their aggregation and TP�/� mice have greatly pro-

longed bleeding times, demonstrating the importance of
TXA2 in hemostasis (Murata et al., 1997; Thomas et al.,
1998). TP receptors are coupled through regulatory G
proteins to increased intracellular phosphoinositol hy-
drolysis. Antagonists for the TP receptor on platelets are
of interest to inhibit platelet aggregation and prevent
further thrombosis after myocardial infarction. TXA2
also causes contraction of all vascular and airway
smooth muscle by stimulating the TP receptor. As ex-
pected, blood platelets of mice with a nonfunctional
COX-1 gene did not aggregate to AA (Langenbach et al.,
1995).

Normal endothelial cells and vascular smooth muscle
cells express COX-1(Hla and Neilson, 1992); however,
COX-2 was identified as a shear stress-inducible gene in
vascular endothelial cell cultures (Topper et al., 1996).
These data suggest that vascular endothelial cells ex-
press COX-2 in response to normal blood flow. Indeed,
recent studies in human volunteers after administration
of COX-2 inhibitors suggest that total body prostacyclin
synthesis (as measured by the quantitation of urinary
metabolites) is contributed significantly by the COX-2
isoenzyme (McAdam et al., 1999). Immunocytochemical
studies, however, suggest that COX-2 expression in nor-
mal vessels (both large and small) is negligible to unde-
tectable, whereas that of COX-1 is readily detectable
(Crofford et al., 1994; Schonbeck et al., 1999). These
observations suggest that COX-1 is highly expressed
whereas COX-2 is expressed at a much lower level in the
normal vascular tissues. In contrast, high levels of
COX-2 are detected in activated and proliferating vas-
cular tissues, for example angiogenic microvessels, ath-
erosclerotic lesions, and inflamed tissues (Sano et al.,
1992).

Normal production of prostacyclin is critical for vessel
tone control and inhibition of thrombosis (FitzGerald et
al., 1983). This is because PGI2/TXA2 balance is critical.
After ingestion of aspirin, platelet thromboxane synthe-
sis and vascular prostacyclin synthesis are inhibited
rapidly; however, nucleated vascular cells recover their
ability to synthesize prostacyclin rapidly, estimated to
be �6 h (Jaffe and Weksler, 1979). In contrast, throm-
boxane synthesis is inhibited for a much longer period,
since platelets lack the ability to resynthesize COX via
de novo protein synthesis (Jaffe and Weksler, 1979).
Thus, aspirin is a first line of defense against thrombotic
and vaso-occlusive vascular diseases (Marcus et al.,
1981). Whether COX-2 inhibition presents a risk for
thrombotic events requires further study (Mukherjee et
al., 2001a).

Atherosclerotic lesions occur in large vessels like the
carotid and the coronary arteries. Plaques are classified
as stable and unstable plaques, depending on the degree
of lipid accumulation and inflammation in the patho-
logic tissue (Lusis, 2000). Unstable plaques have high
levels of metalloproteinase production, contain more ac-
tivated foam cells, and have lipid accumulation in the
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lesion. They are highly prothrombotic and lead to rup-
ture, culminating in the occlusion of the vessel (Lusis,
2000). COX-2 expression was found to be elevated in
human atherosclerotic plaques (Schonbeck et al., 1999).
Monocytic foam cells and vascular endothelial cells, ex-
press high levels of COX-2 in these lesions (Schonbeck et
al., 1999). It is likely that oxidized low-density lipopro-
tein components, such as lysophosphatidyl choline, as
well as cytokines and growth factors found in the lesions
induce the COX-2 gene expression. The role of COX-2 in
these lesions in not well understood. Studies with COX-2
null mice and COX-2 inhibitors are required to better
define the causal role (if any) of COX-2 in atherosclerosis
and other vascular pathologies.

Recently there is renewed interest in the role of COX
products in the formation of new vessels, a process com-
monly referred to as angiogenesis (Hla et al., 1993).
Early studies by Gullino showed that PGE2 is a potent
inducer of angiogenesis in the corneal models of angio-
genesis (Ziche et al., 1982); however, the mechanisms
involved are not well understood since PGE2 does not
potently stimulate endothelial cell migration, prolifera-
tion, and morphogenesis. In addition, various in vivo
studies indicate that NSAIDs inhibit angiogenesis in
various in vivo models (Majima et al., 1997). Such stud-
ies were inconclusive since the doses of drugs used to
inhibit angiogenesis are much higher than the doses
required to inhibit COX-1 or -2 activity. It is known that
high concentration of NSAIDs have effects independent
on COX enzyme activity (Marx, 2001). Various studies
reported that PGE2 is a potent inducer of vascular en-
dothelial cell growth factor (VEGF) expression in rheu-
matoid synovial fibroblasts and osteoblasts (Harada et
al., 1994; Ben-Av et al., 1995). These data suggest that
PGE2 can induce angiogenesis indirectly by up-regulat-
ing VEGF expression of stromal cells. The receptor sub-
type involved in VEGF expression is not known, but
cAMP increases may be involved, suggesting that EP2
and/or EP4 subtypes may be critical (Ben-Av et al.,
1995).

The induction of angiogenesis by the COX-derived
PGE2 may be potentially involved in colon cancer (Han-
sen-Petrik et al., 2002). Tsujii et al. (1998) reported that
enhanced COX-2 expression in colon cancer cells modu-
lates the angiogenic behavior of endothelial cells in the
coculture system. The authors showed that secretion of
angiogenic factors, such as VEGF and fibroblast growth
factor, is modulated by COX-2 overexpression (Tsujii et
al., 1998). The mechanistic details of how COX-2 regu-
lates angiogenic growth factor expression secretions are
not well understood. Furthermore, the DuBois labora-
tory has recently extended these findings and showed
that tumor angiogenesis and growth of explanted tu-
mors are reduced in the COX-2 null mice; suggesting
that host COX-2 induction by the tumor cells contributes
to tumor angiogenesis and ultimately the growth of the
tumors (Williams et al., 2000a). These observations, cou-

pled with the findings that COX-2 is overexpressed in
the angiogenic lesions, suggest that COX-2 inhibitors
may possess an antiangiogenic effect in various patho-
logic conditions such as rheumatoid arthritis and solid
tumors; however, effective inhibition of angiogenesis
should lead to disease modification in rheumatoid ar-
thritis, an effect that is not observed in chronic clinical
use of NSAIDs and COX-2 inhibitors (Crofford, 2000).
Thus, the role of COX-2 and its products in angiogenesis
in various pathological contexts is unclear at present.

The effects of COX-1 and -2 on angiogenesis are as-
sumed to be due to the actions of secreted prostanoids
that act in an autocrine and/or paracrine manner; how-
ever, the ability of the peroxidase activity to utilize
various reducing equivalents may also contribute to
those effects (Ohki et al., 1979). Some in vitro and in vivo
studies have raised the possibility that NSAID-treated
COX enzymes as well as active site mutants of the COX
enzymes that fail to synthesize prostanoids induce ef-
fects on transfected cells (Narko et al., 1997; Trifan et
al., 1999). Although these studies are suggestive, defin-
itive involvement of the peroxidase activity of the COX
enzyme in various physiological phenomena dependent
on COX-1 or -2 expression is not yet demonstrated.

Although the mechanistic studies have yielded a mul-
titude of possibilities of the COX pathway to regulate
angiogenesis, unequivocal evidence that COX enzymes
regulate angiogenesis is lacking at present. Clearly, an-
giogenesis during embryo development does not require
the COX pathway since the vascular system develops
normally in both COX-1- and COX-2-deficient mice
(Langenbach et al., 1999a). However, embryo implanta-
tion defects seen in COX-2�/� female mice may be re-
lated to the effect of prostanoid induction of angiogenesis
in the uterine implantation site. In this system, the
PPAR� nuclear receptor is essential and induction can
be restored by carbaprostacyclin, a pharmacological ag-
onist of the PPAR� receptor (Lim et al., 1997); however,
various NSAIDs inhibit angiogenesis in models of angio-
genesis, such as the sponge and corneal model (Majima
et al., 1997). Further studies using both selective antag-
onists, enzyme inhibitors, as well as receptor gene null
mice are required to establish the role of the COX en-
zymes in angiogenesis in vivo.

In contrast, prostanoids are required for maintenance
of an open ductus and for its closure in the postnatal
period (Heymann et al., 1976; Loftin et al., 2001). The
transition from maternal to fetal circulation is followed
by the closure of the ductus, which separates the arterial
and venous systems and thereby allows for efficient pul-
monary blood flow (Loftin et al., 2001). Premature clo-
sure of the ductus leads to abnormal pulmonary pres-
sure and lung dysfunction. Clinical studies have shown
that indomethacin treatment produces closure of the
ductus, suggesting that prostanoids mediate this pro-
cess (Segi et al., 1998; Loftin et al., 2001). Indeed, COX-1
and -2 double null homozygous mice develop neonatal
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circulatory failure due to the failure to close the ductus
arteriosus (Loftin et al., 2001). This phenotype was also
seen in EP4 null mice, suggesting that PGE2 signaling
via the EP4 receptor is involved (Loftin et al., 2001);
however, the role of other prostanoids such as throm-
boxane A2 is also implicated (Ushikubi et al., 2000;
Loftin et al., 2001). These data indicate the essential
nonredundant function of prostanoids in vascular devel-
opment and remodeling in the neonatal period (Ush-
ikubi et al., 2000). Whether similar mechanisms operate
in pathological vascular remodeling is not known.

H. Kidney

The cortex of normal kidneys produces mainly PGE2
and PGI2 with very small amounts of TXA2 (Farman et
al., 1987). The renal medulla produces mostly PGE2 for
which it has a synthetic capacity approximately 20 times
that of the cortex (Zusman and Keiser, 1977). Urinary
PGE2 levels are generally regarded as reflecting produc-
tion of PGE2 by the kidneys (Patrono and Dunn, 1987).
PGE2 and PGI2 have vasodilator actions in the kidney,
and intrarenal infusions of these PGs increase renal
blood flow. PGs are also natriuretic, inhibiting tubular
sodium reabsorption, and in the thick ascending limb of
the loop of Henle, they reduce chloride transport. Glo-
merular epithelial and mesangial cells have the syn-
thetic capacity to form both PGI2 and PGE2. These pro-
stanoids are therefore uniquely situated to influence
renal blood flow, glomerular filtration rate, and the re-
lease of renin. PGI2 and PGE2 synthesized in the renal
cortex are important stimulators of renin release (Os-
born et al., 1984). PGI2 formed by COX-2 in mesangial
cells may directly stimulate renin secretion since up-
regulation of COX-2 has been observed in the macula
densa following salt deprivation (Harris et al., 1994).

Different nephron segments synthesize a distinctive
spectrum of AA metabolites that behave as either mod-
ulators or mediators of the actions of hormones on tubu-
lar function (Carroll et al., 1991; Omata et al., 1992).
Studies on rabbit medullary cells in the thick ascending
limb of Henle’s loop (mTALH) revealed that the princi-
pal pathway of AA metabolism in this segment of the
nephron is via cytochrome P450 (P450) and not COX-1
(Schwartzman et al., 1985). Thus, the major P450-de-
rived AA products synthesized by the rabbit mTALH are
19- and 20-hydroxyeicosatetraenoates (HETEs) and 20-
COOH HETE, a metabolite of 20-HETE (Omata et al.,
1992); however, some COX-2 protein is also expressed
constitutively in unstimulated mTALH cells and COX-2
expression increases after treatment with TNF or phor-
bol 12-myristate 13-acetate (Ferreri et al., 1999). In ad-
dition, the products of P450 interact with TNF formed by
mTALH cells and with angiotensin II to regulate ion
transport in cells of the mTALH (Ferreri et al., 1998).

Maintenance of kidney function in animal models of
disease states and in patients with congestive heart
failure, liver cirrhosis, or renal insufficiency is depen-

dent on vasodilator PGs. These patients are, therefore,
at risk of renal ischemia when PG synthesis is reduced
by NSAIDs. Synthesis of PGE2 is mainly by COX-1,
although as mentioned above, there are discrete cells in
the macula densa that contain constitutive COX-2 (Har-
ris et al., 1994; Harris, 1996). Prostacyclin, made by
constitutive COX-2 may drive the renin-angiotensin sys-
tem (Harris, 1996). This rapidly evolving field is re-
viewed by Schneider and Stahl (1998).

FitzGerald’s group (Catella-Lawson et al., 1999) com-
pared the renal effects of the nonselective COX inhibitor
indomethacin with those of the selective COX-2 inhibitor
rofecoxib and with placebo in healthy older adults over 2
weeks of treatment. Both active regimes were associated
with a transient but significant decline in urinary so-
dium excretion during the first 72 h. The glomerular
filtration rate (GFR) was decreased by indomethacin but
not changed significantly by rofecoxib. Thus, acute so-
dium retention by NSAIDs in healthy adults is mediated
by inhibition of COX-2, whereas depression of GFR is
due to inhibition of COX-1. The urinary excretion of the
PGI2 metabolite, 2,3-dinor-6-keto-PGF1� was decreased
by both rofecoxib and indomethacin, but not by placebo
(Catella-Lawson et al., 1999). The implication of this is
that prostacyclin is synthesized in endothelial cell by
COX-2 rather than COX-1. COX-2 is possibly continu-
ously induced by the shear stress on the arterial wall,
rather than being present constitutively (Topper et al.,
1996).

Young male and female COX-2 gene-deficient mice
showed arrested development of the kidneys (Dinchuk et
al., 1995; Morham et al., 1995). Rodent kidneys develop
fully only after birth, and COX-2 appears to be impor-
tant in this process. Failure to develop mature kidneys
shortened the life span of the COX-2 gene null mice to
approximately 8 weeks. This retardation of renal corti-
cal development could be mimicked in mice and rats by
chronic administration of a selective COX-2 inhibitor to
the mother during pregnancy and to the pups until
weaning (Kömhoff et al., 2000). Failure to develop ma-
ture kidneys shortens the life span of COX-2 null mice to
approximately 2 weeks in some genetic backgrounds;
however, it may be possible to overcome this develop-
mental defect by cross-breeding the original COX-2�/�

C57BL/6 mice with a DBA/1 strain (Ballou et al., 2000).
The animals of this mixed strain live a full life span, and
their kidneys appear to develop normally (Laulederkind
et al., 2002). This suggests the potent effects of modifier
genes on COX-2 regulation of kidney development.

I. Lungs

PGs have potent actions on bronchiolar tone and on
the diameter of the pulmonary blood vessels. The air-
ways of most species, including humans, contract to
PGF2�, TXA2, and PGD2, whereas PGE2 and PGI2 are
weak bronchodilators. PGD2 and PGF2� potently con-
strict the airways in asthmatic patients and potentiate
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the constrictor responses to other spasmogens (Hardy et
al., 1984; Fuller et al., 1986). The concentrations of
PGD2 and PGF2� in bronchoalveolar lavage fluid of asth-
matic subjects were 10-fold higher than in control non-
asthmatic and atopic individuals (Liu et al., 1990). Ex-
cretion of the stable metabolite of TXA2 increases after
allergen challenge (Sladek et al., 1990). Thus, raised
levels of bronchoconstrictor PGs in the lungs may con-
tribute to allergic bronchospasm during asthmatic at-
tacks. Pulmonary blood vessels are constricted by PGF2�

and TXA2, but in some species they dilate to PGE2.
Prostacyclin is a potent vasodilator of the pulmonary
circulation in humans and other species.

Blood levels of prostacyclin increase 15- to 20-fold in
anesthetized patients with artificial ventilation. This
endothelium-derived prostacyclin is well placed to func-
tion as a local vasodilator and to prevent the formation
of microthrombi (Bakhle and Ferreira, 1985). PGI2 may
be important in regulating pulmonary vascular tone
during chronic hypoxia. Overexpression of prostacyclin
synthase (PGIS) in lung epithelium of transgenic mice
prevented development of pulmonary hypertension after
exposure to hypobaric hypoxia (Geraci et al., 1999),
whereas lungs of patients with severe pulmonary hyper-
tension expressed lower levels of PGIS than those of
control subjects (Tuder et al., 1999).

Mediators of inflammation such as bradykinin, hista-
mine, and 5-hydroxytryptamine release PGs from lung
tissue. Histamine releases PGF2� from human lung
fragments by stimulating H1 receptors. Lungs of asth-
matics produce more histamine than normal lungs,
which correlates with the greater number of mast cells
found in asthmatic lungs (Holgate, 1986). Pro-inflamma-
tory cytokines such as IL-1� and TNF� are present in
the inflamed airways of asthmatic patients (Barnes,
1994) and induce COX-2 expression in lung epithelial
cells, airway smooth muscle, pulmonary endothelial
cells, and alveolar macrophages (Mitchell et al., 1995).
In the carrageenan-induced pleurisy model of inflamma-
tion, levels of COX-2 in the cell pellets of pleural exudate
increased maximally 2 h after the injection of carra-
geenan (Tomlinson et al., 1994). This was accounted for
by induction of COX-2 in 100% of mast cells, in 65% of
resident mononuclear leukocytes, and in 8% of extrava-
sated neutrophils present in the exudates (Hatanaka et
al., 1996).

Inflammatory stimuli cause differential release of PGs
from various regions of the lungs. Human cultured pul-
monary epithelial cells stimulated with LPS, IL-1�,
TNF�, or a mixture of cytokines synthesize mainly PGE2
together with smaller amounts of PGF2�, PGI2, and
TXA2. This PG production can be suppressed by dexa-
methasone (Mitchell et al., 1994). Thus, PGE2 is the
main product of COX-2 induced in lung epithelial cells
(Springall et al., 1995; Newton et al., 1997) and in vitro
studies in animals suggest that epithelial PGE2 may
protect against bronchoconstriction induced by bradyki-

nin, tachykinins, and endothelin (Frossard et al., 1989,
1990; Battistini et al., 1990; Goldie et al., 1990; Devillier
et al., 1991). Moreover, evidence in COX-2 null mice
suggests that COX-2-produced PGE2 prevents chemi-
cally induced pulmonary fibrogenesis (Bonner et al.,
2002). Endogenous PGE2 may therefore be bronchopro-
tective in asthma and other pulmonary conditions and
may act as an endogenous anti-inflammatory factor (Pa-
vord and Tattersfield, 1995). Aspirin-induced asthma
may be triggered by increased release of leukotrienes
from inflammatory cells caused by removal of the inhib-
itory influence of PGE2, a major product of COX-2 in
airways (Szczeklik, 1988, 1995; Kuitert et al., 1996).

The true role of PGs in asthma is unclear. The nonse-
lective NSAIDs have very little effect on airway function
in most patients with asthma except to make the disease
worse in aspirin-sensitive asthmatics. Perhaps the ac-
tions of the bronchoconstrictor PGs are counterbalanced
by the protective dilator action of PGE2. It remains to be
seen whether selective COX-2 inhibitors will be benefi-
cial in allergic asthma; however, mast cells, by produc-
ing PGD2 in response to an allergic challenge (Lewis and
Austen, 1981), may have a pathological role in allergic
asthma. Disruption of the gene encoding the DP receptor
in ovalbumin-sensitized mice (Matsuoka et al., 2000)
prevented the infiltration of cytokine-responsive cells
into the lungs. This suggests that PGD2 released from
mast cells stimulates production of cytokines and che-
mokines by an action on DP receptors, which leads to
recruitment of inflammatory cells into the lungs.

A physiological role has been proposed for constitutive
COX-2 in the lung, for it was found in noninflamed rat
lungs (Ermert et al., 1998). COX-2 is present in vascular
smooth muscle cells of normal rat lungs as well as in
lung macrophages and mast cells. Arachidonic acid per-
fused through isolated rat lungs forms TXA2 and causes
vasoconstriction, which is blocked dose dependently
with selective COX-2 inhibitors, suggesting a physiolog-
ical role for COX-2 in the regulation of pulmonary blood
flow (Ermert et al., 1998).

J. Reproduction

Human seminal fluid contains high concentrations of
several PGs including PGE2, PGE1, PGE3, and PGF2�

(Samuelsson, 1963), which perhaps function to relax
corporeal smooth muscle. These PGs may also facilitate
conception by stimulating contractions of the cervix, fal-
lopian tubes, and uterus. Prostaglandin E1 given by
injection into the corpus cavernosum has been used as a
treatment for impotence.

The EP2 receptor is important for in vivo fertilization,
as EP2�/� mice ovulated normally but the ova failed to
become fertilized (Tilley et al., 1999). Because of these
problems with ovulation and fertilization, EP2�/� fe-
male mice give birth to unusually small litters (Hizaki et
al., 1999), emphasizing the importance of PGE2 in re-
productive processes. PGE2 is involved in ripening of the
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cervix prior to labor and can itself induce labor at any
stage of pregnancy. It is made by COX-1 and COX-2, as
is PGF2�, in the pregnant uterus, fetal membranes, and
umbilical cord. COX-2 mRNA in the amnion and pla-
centa increases considerably immediately before and af-
ter the start of labor (Gibb and Sun, 1996).

PGF2� is involved in reproductive processes such as
ovulation, luteolysis and parturition. In most species,
except primates and humans, PGF2� activity made by
the induction of COX-2 is required for commencement of
parturition, since mutant mice lacking the gene for the
FP receptor, are unable to give birth. The action of
PGF2� on the FP receptor of the corpus luteum induces
luteolysis, which terminates progesterone production,
and hence triggers parturition, for, in the absence of
progesterone, the uterus becomes more sensitive to oxy-
tocin (Sugimoto et al., 1997). Analogs of PGF2� are, in
fact, used to synchronize estrus and to produce luteoly-
sis in farm animals. In humans, the induction of COX-2
in the amniotic membranes and uterine wall at parturi-
tion leads to the synthesis of PGF2� and PGE2, which
contract the smooth muscle to expel the fetus (Allport
and Bennett, 2001).

Normally, PGs acting on the EP4 receptor maintain
the patency of the ductus arteriosus before birth, yet
most EP4�/� mouse neonates die within 72 h after birth.
Histological examination of these animals showed that
the ductus arteriosus remained open. Presumably, in
the absence of the EP4 receptor, PGs are no longer
involved in maintaining a patent ductus arteriosus.
Other mechanisms have taken over the role of PGs, but
no means exist for the termination of their action at
birth. Thus, normal function of the EP4 receptor is es-
sential to mediate neonatal adaptation of the cardiovas-
cular system (Nguyen et al., 1997; Segi et al., 1998).
Moreover, some fetuses of COX-1 null mice and all neo-
nates born to homozygous COX-1/COX-2 null animals
did not survive, most likely because their ductus arteri-
osus remained patent after birth (Langenbach et al.,
1995).

Deletion of the COX-2 gene in female mice resulted in
infertility because they did not ovulate (Lim et al., 1997).
Thus, COX-2 appears to be essential for ovulation in
mice. Ovulation was restored in these animals by treat-
ment with PGE2 or IL-1� (Davis et al., 1999) demon-
strating the role of PGE2 in ovulation. The role of IL-1�
in restoring ovulation of COX-2�/� mice requires further
clarification.

K. Brain and Spinal Cord

COX-1 is found in neurons throughout the brain but it is
most abundant in the forebrain (Yamagata et al., 1993;
Breder et al., 1995), where PGs may be involved in complex
integrative functions such as control of the autonomic ner-
vous system and in sensory processing. COX-2 mRNA is
induced in brain tissue and cultured glial cells by pyro-
genic substances such as LPS, IL-1, or TNF (Breder and

Saper, 1996; Cao et al., 1996, 1998). Low levels of COX-2
protein and COX-2 mRNA have been detected in neurons
of the forebrain without previous stimulation by pro-in-
flammatory stimuli (Yamagata et al., 1993; Breder et al.,
1995; Cao et al., 1995). These “basal” levels of COX-2 are
particularly high in neonates and are probably induced by
nervous activity. Intense nerve stimulation, leading to sei-
zures, induces COX-2 mRNA in discrete neurons of the
hippocampus (Marcheselli and Bazan, 1996), whereas
acute stress raises levels in the cerebral cortex (Yamagata
et al., 1993). COX-2 mRNA is also constitutively expressed
in the spinal cord of normal rats and may be involved with
processing of nociceptive stimuli by releasing PGE2
(Beiche et al., 1996; Yaksh and Svensson, 2001). The an-
tihyperalgesic action of NSAIDs is mediated by inhibition
of constitutive spinal COX-2 but not COX-1 (Yaksh and
Svensson, 2001). Endogenous fever-producing PGE2 is
thought to originate from COX-2 induced in endothelial
cells lining the blood vessels of the hypothalamus (Cao et
al., 1996) by circulating LPS or IL-1 (Ek et al., 2001).

PGE2 is synthesized in the human brain as well as
PGD2, which has a more limited distribution. Large
amounts of PGD2 are found in the brains of mammals
(Narumiya et al., 1982; Ogorochi et al., 1984) and in
mast cells but practically nowhere else. In addition to
PGD2 itself, PGD synthase and 15-hydroxy-PGD2 dehy-
drogenase (which metabolizes PGD2) have been identi-
fied in mammalian brains (Watanabe et al., 1980; Toku-
moto et al., 1982). In young rodents, PGD synthase is
localized in neurons, whereas in adult animals it is
mainly restricted to oligodendrocytes (Urade et al.,
1987). The reason for this selective distribution and the
significance of PGD2 in the brain is unknown. DP recep-
tors have been found in the brain as well as in some
vascular smooth muscle and blood platelets. They are
coupled to adenylate cyclase through a Gs protein and
stimulation results in formation of cyclic AMP.

PGD2 and PGE2 have opposing actions in sleep and
temperature regulation. Microinjections of PGD2 into the
preoptic area of the rat brain induces normal sleep (Ueno
et al., 1982a), whereas PGE2 infused into the region of the
posterior hypothalamus causes wakefulness (Hayaishi,
1991). Similarly, administration of PGD2 lowers body tem-
perature (Ueno et al., 1982b), and PGE2 has a pyretic
action (Milton and Wendlandt, 1971). It is interesting that
patients with systemic mastocytosis fall deeply asleep af-
ter periods of production of large amounts of PGD2 by their
mast cells (Roberts et al., 1980).

III. Regulation of Expression of
Cyclooxygenase-1 and -2

Prostaglandin research underwent a dramatic para-
digm shift in the early 1990s in that the regulation of
COX enzyme levels was recognized as a major control
point in the biosynthesis of prostanoids (Bailey et al.,
1985; Albrightson et al., 1985). This is in contrast to the
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studies a decade ago, when the phospholipase step was
considered the major control point (Hirata et al., 1987).
For example, anti-inflammatory effects of glucocorti-
coids were thought to be primarily due to the induction
of phospholipase inhibitory proteins called lipocortins, a
hypothesis that is now largely abandoned. Although
early studies by Murota (Chang et al., 1980), Needle-
man, and Bailey (Bailey et al., 1985) pointed out the
regulatory mechanisms of induction of COX enzyme by
hormones, cytokines, and growth factors, many studies
attributed the effects of inducers of prostanoid synthesis
to the induction of phospholipases (Hirata et al., 1987).
The cloning efforts of COX-1 and -2, studies on the
expression of COX genes in cultured cells, and the dem-
onstration that COX expression levels are correlated
with inflammatory disease phenotype in animal studies
as well as human tissues played a role in this paradigm
shift of prostanoid synthesis regulation (Hla et al., 1986;
DeWitt and Smith, 1988; Kujubu et al., 1991; Xie et al.,
1991; Sano et al., 1992).

The genes for COX-1 and -2 from the mouse and
human were isolated by various laboratories (Fletcher et
al., 1992; Kraemer et al., 1992; Appleby et al., 1994).
These data show that the COX-1 gene is encoded by a
large (�28 kb) gene, containing 11 exons. The promoter
structure of the COX-1 gene suggested that GC-rich,
SP1-like elements are involved in transcription of this
gene (Kraemer et al., 1992). The expression of the COX-1
gene is generally constitutive and ubiquitous and rela-
tively little is known about promoter elements that con-
trol transcription (Kraemer et al., 1992; Smith and DeWitt,
1996). COX-1 expression is induced during cell quiescence
and differentiation in endothelial and mast cells, respec-
tively (Smith and DeWitt, 1996). Enhancer elements that
confer such regulation have not been defined.

The COX-2 gene is compact (�8 kb), consistent with
the notion that immediate-early genes are transcribed
from small genes (Fletcher et al., 1992; Appleby et al.,
1994). The exon/intron organization is nearly identical
between the two genes; however, the COX-1 gene con-
tains an extra intron, intron-1, that participates in al-
ternative splicing to give rise to COX-3 and PCOX pro-
teins (Chandrasekharan et al., 2002). The
polyadenylation sites for the human COX-2 gene have
been mapped, and two functional sites were identified,
which gives rise to a small 2.8-kb and a large 4.6-kb
mRNA isoform (Ristimaki et al., 1996). The large tran-
script is found in higher abundance, suggesting that the
downstream polyadenylation site is used preferentially
(Ristimaki et al., 1996).

The promoter region of the COX-2 gene has been char-
acterized extensively. Early studies on serum and v-src
regulation of mouse COX-2 transcription indicated that
the cAMP response element is critical (Xie et al., 1994).
Furthermore, activation of mitogen-activated protein ki-
nase pathways (such as extracellular signal-regulated
kinase and c-Jun NH2-terminal kinase) results in the

modulation of transcription factor activity that works
through the cAMP response element site (Herschman et
al., 1997). In addition, other investigators have found
that CREB/NF-IL-6 elements, NF�B sites either alone
or in concert with each other, are critical for maximal
induction of transcription by cytokines, growth factors,
oncogenes, and tumor promoters (Sirois and Richards,
1993; Crofford et al., 1997; Herschman et al., 1997). In
addition, PPAR� response elements, Ets sites, and PEA
sites have also been identified recently as functional
enhancer elements (Smith et al., 2000). The role of these
inducible enhancer elements in COX-2 transcription in
vivo has not been characterized.

Early studies on the effects of serum, cytokines, and
glucocorticoids on the regulation of COX-2 expression
identified that mRNA stability of COX-2 is also likely to
be a major regulatory step (Evett et al., 1993; Ristimaki
et al., 1994). Indeed, multiple copies of the AUUUA
element, first identified by Shaw and Kamen (1986)
were present in the 3�-UTR of the COX-2 gene (Appleby
et al., 1994). Moreover, the 3�-UTR of the COX-2 gene
contains several sequence stretches that are conserved
between diverse species (Ristimaki et al., 1996). Fur-
thermore, dexamethasone treatment of synovial fibro-
blasts involves dramatic destabilization of cytokine-in-
duced COX-2 mRNA (Ristimaki et al., 1996).
Interestingly, the large transcript isoform decays with
faster kinetics than the shorter isoform, suggesting that
multiple elements in the 3�-UTR cooperate in the mRNA
degradation processes (Ristimaki et al., 1996). Morrison
and colleagues also showed that IL-1 induced COX-2
mRNA stability in kidney mesangial cells and that sev-
eral polypeptide species from IL-1-stimulated cells
bound to the COX-2 3�-UTR (Cok and Morrison, 2001;
Srivastava et al., 1994). These observations were con-
firmed by Barnes and colleagues in fibroblasts and sy-
noviocytes (Ridley et al., 1998; Lasa et al., 2000).

Functional studies of mRNA stability were recently
conducted to better define the cis-elements and trans-
factors. Fusion of the COX-2 3�-UTR to the luciferase
open reading frame reporter gene resulted in the de-
creased expression of the luciferase expression and
mRNA levels (Gou et al., 1998; Cok and Morrison, 2001).
Deletion of the proximal AU-rich cluster reversed that
effect, consistent with the notion that this region con-
tains mRNA destability elements (Gou et al., 1998; Cok
and Morrison, 2001). Such chimeric reporter constructs
did not respond to IL-1 and dexamethasone in trans-
fected kidney epithelial cells and mesangial cells as well
as in colon cancer cells (Gou et al., 1998; Cok and Mor-
rison, 2001). Deletion analysis of these constructs
showed that multiple elements in the 3�-UTR regulated
expression of the transgenes. Thus, the luciferase re-
porter system was useful in identifying basal instability
of the COX-2 mRNA but was not able to reconstitute the
extracellular mediator regulation of mRNA stability.
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Using a tetracycline-regulated system for examining
cis-element, the proximal conserved AU-rich element
was identified as a major element involved in cytokine-
induced COX-2 mRNA stabilization (Srivastava et al.,
1994; Cok and Morrison, 2001). The authors went on to
show that p38 stress-activated kinase pathway is criti-
cal for cytokine-induced COX-2 mRNA stability, which
seems to work, at least in part, through the proximal
AU-rich element (Srivastava et al., 1994; Cok and Mor-
rison, 2001). Recently, the same laboratory demon-
strated that inhibition of the p38 pathway may account
for the ability of dexamethasone to inhibit COX-2 mRNA
stabilization (Srivastava et al., 1994; Cok and Morrison,
2001). Murphy and coworkers showed in vascular
smooth muscle cells that purinergic stimulation of its
G-protein-coupled receptors regulated COX-2 mRNA
stabilization through the proximal and distal elements
(Xu et al., 2000). These efforts have begun to define the
cis-elements involved in COX-2 mRNA stability regula-
tion; however, proteins that interact with these ele-
ments are only presently being defined. Recently,
Sawaoka (2003) identified tristetraprolin as an mRNA
destabilizing protein that binds in the region between
3125 and 3432 of the COX-2 mRNA. This protein is
proposed to participate in the destabilization of the large
COX-2 transcripts. Based on the analogy with other
immediate early transcripts, such as c-myc and c-fos, it
is likely that several RNA-binding proteins such as
AUF-1 and HuR will be involved. Indeed, recent work
showed that HuR binds with high affinity to three dis-
tinct sites on the 3�-UTR of COX-2 mRNA and that this
binding is necessary for the serum starvation-induced
COX-2 expression in MDA-MB-231 mammary cancer
cells (Sengupta et al., 2003). How RNA-binding proteins
interact with signaling proteins to regulate both basal
and regulated RNA degradation is a future challenge in
this area. Given that physiologic regulation of COX-2
expression occurs by the inhibition of cytokine-induced
mRNA stability, and COX-2 mRNA stability seems to be
involved in the exaggerated COX-2 expression observed
in tumors, new knowledge in this area may have impor-
tant therapeutic implications. COX-2 regulation in neo-
plasia and the role of transcriptional mechanisms and
RNA stabilization has recently been reviewed by Dixon
(2003).

In addition to regulation of COX-2 expression by tran-
scription and mRNA stability, the chicken COX-2 mRNA
is additionally regulated by a unique mechanism of RNA
splicing—further underscoring the exquisite control reg-
ulating COX-2 expression at the RNA level. In prolifera-
tively quiescent chicken embryo fibroblasts, intron-1 of
the COX-2 pre-mRNA is retained even after the mRNA
is fully processed (Xie et al., 1991). The consequence of
this intron retention is that the mRNA is nonfunctional
due to the introduction of a frame shift by insertion of
intron-1, which is located immediately following the se-
quence encoding the signal peptide of COX-2. Addition-

ally, this intron-1-containing transcript is sequestered
in the nucleus preventing translation. Upon mitogenic
stimulation, COX-2 mRNA becomes fully spliced to al-
low export from the nucleus and translation of COX-2
(Xie et al., 1991). This unique mechanism governing
COX-2 expression requires a series of 18 tandem repeat
sequences as well as a unique 3� splice site that utilizes
CU rather than the canonical AG as the dinucleotide at
the intron/exon junction (Xie et al., 1991). The creation
of variants of COX-1 by retention of all or part of in-
tron-1 as well as skipping of other introns is described
above.

Finally, regulation of transport of the COX-2 mRNA
may also have functional significance. The transport of
COX-2 mRNA from the nucleus to the rough ER requires
the CRM1 nuclear export pathway, and as a specific
inhibitor of this pathway, leptomycin�, blocks transport
and decreases the expression of COX-2 gene in MDA-
MB-231 mammary cancer cells (Jang et al., 2003). Since
some RNA-binding proteins such as HuR are also trans-
ported by this pathway, it is likely that some RNA/
protein interactions regulate proper trafficking of
COX-2 mRNA, which has a major impact on COX-2
expression in some systems.

IV. Cyclooxygenase Isozymes in Human Disease

A. Treatment of Inflammatory Diseases

NSAIDs are currently used as first-line therapeutics
in the treatment of osteoarthritis (OA), rheumatoid ar-
thritis (RA), systemic lupus erythematosis, and other
inflammatory syndromes. In each case, NSAID treat-
ment is palliative rather than disease modifying.
NSAIDs reduce inflammation and pain in these syn-
dromes.

In the short period of 8 years after the discovery of
COX-2, selective inhibitors of this enzyme were devel-
oped for use in RA, OA, and for pain relief. Even before
the discovery of COX-2, pharmaceutical companies were
searching for anti-inflammatory drugs that would have
less damaging effects on the stomach than existing ther-
apies. In the 1980s, these experiments resulted in the
development of three drugs with anti-inflammatory ac-
tivity but with very little inhibitory effect on PG produc-
tion by the stomach. Nimesulide, etodolac, and meloxi-
cam emerged from preclinical studies as anti-
inflammatory compounds with less damaging effects on
the stomach than established NSAIDs. After the discov-
ery of COX-2 in 1991 (Kujubu et al., 1991; Xie et al.,
1991), these drugs were shown to have a selective inhib-
itory action on COX-2 compared with COX-1; however,
after the cloning of COX-2, inhibitors were designed
with an even greater selectivity for COX-2.

Selectivity for the inducible isoform was established
by comparing inhibitory potency against COX-1 mea-
sured as the IC50 with inhibition of COX-2 in isolated
enzymes, cultured cells, or in the whole blood assay.
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Slightly different measurements of selectivity were ob-
tained in each system, but the relative values between
drugs and their order of potency generally remained the
same. The most reproducible estimates of selectivity
have been obtained by comparing inhibitory potency on
recombinant human enzymes or by measuring the selec-
tivity with the human whole blood assay (Patrignani et
al., 1994). The latter is considered to resemble most
closely the clinical situation in patients taking NSAIDs.
Blood proteins are present so that drug binding to pro-
tein is accounted for and endogenous human enzymes
are used. The inhibitory potency against COX-1 is mea-
sured on platelets in clotting blood, whereas potency for
inhibition of COX-2 is estimated in blood monocytes
previously incubated with endotoxin to induce COX-2.
The modified William Harvey whole blood assay
(Warner et al., 1999) uses cultured A549 cells, instead of
blood monocytes, incubated with IL-1 and added to hu-
man blood for estimation of activity against COX-2.

1. Nimesulide. Nimesulide, like etodolac, was devel-
oped in the 1980s and has been licensed by Helsinn
Healthcare SA to a number of other pharmaceutical
companies. It has been sold over the counter in Italy
since 1985 and subsequently in many other European
and South American countries. Chemically, nimesulide
has a sulfone structure and resembles structurally the
selective COX-2 inhibitors developed in the 1990s (Fig.
11).

Early experimental studies in rats demonstrated that
at anti-inflammatory doses that reduced carrageenan-
induced paw edema, nimesulide had no effect on gastric
PG levels and did not cause bleeding of the gastric mu-
cosa (Carr et al., 1986; Nakatsugi et al., 1996). Its selec-
tive inhibition of COX-2 has been demonstrated in vitro
using purified enzymes; the IC50 for COX-1 was 5-fold
greater than that for COX-2 (Barnett et al., 1994; Cullen
et al., 1998). In the human whole blood assay (Patrig-
nani et al., 1997), nimesulide was 20 times more potent
in inhibiting COX-2 in monocytes than COX-1 in plate-
lets (IC50 for COX-2 � 0.5 �M; IC50 for COX-1 � 9 �M).
A single oral dose (100 mg) of nimesulide reduced mono-
cyte COX-2 and platelet COX-1 ex vivo by 90 and 50%,
respectively; however, this reduction in COX-1 activity
may not be sufficient to affect platelet aggregation or
bleeding time (Panara et al., 1998). A reduction of 29%
in serum TXB2 levels with nimesulide had no effect on
arachidonic acid-induced platelet aggregation in hu-
mans in vivo; however, reducing TXB2 levels by 98%
with naproxen prevented arachidonic acid-induced
platelet aggregation (Shah et al., 1999). PGE2 produc-
tion from gastric biopsies was also reduced by 79% with
naproxen and only by 19.5% with nimesulide.

Comparing gastroduodenal damage with nimesulide
or naproxen in 36 healthy volunteers showed a highly
significant difference in favor of nimesulide (P � 0.0001)
(Shah et al., 2001). The relatively short half-life of nime-
sulide (1.8–4.7 h) (Bree et al., 1993; Bernareggi, 1998)

may contribute to its lack of gastrointestinal toxicity,
because this would allow PG synthesis in the gastric
mucosa to recover before their protective effect has worn
off. Estimates of rate ratios for peptic ulcer, gastrointes-
tinal hemorrhage, or perforation placed the incidence for
nimesulide below that for diclofenac and naproxen
(Menniti-Ippolito et al., 1998). Other epidemiological
analyses (Garcia Rodriguez et al., 1998; Porto et al.,
1998) have estimated gastric damage with nimesulide to
be equal to or worse than with diclofenac. This surpris-
ing result may be due to the small numbers of patients
in these studies and the wide range of confidence inter-
vals of the estimates (Rainsford, 1999).

The therapeutic efficacy of nimesulide has been dem-
onstrated in clinical trials in at least 55,000 patients for
inflammation and pain including OA (Lücker et al.,
1994; Huskisson et al., 1999), RA, musculoskeletal in-
flammation, headache, dysmenorrhea, postsurgical and
cancer pain, vascular diseases, upper respiratory tract
diseases, and airways inflammation (Bennett, 2001). Its
action is rapid in onset because it is effective within 20
to 30 min for pain of oral surgery (Ragot et al., 1993) or
in dysmenorrhea (Pulkkinen, 1984, 1993). Of an esti-
mated 200 million patients treated with nimesulide
since its introduction in 1985, only 1212 adverse events
were reported to Helsinn Healthcare SA (Rainsford,
1999) during 1985 through 1999; however, in March
2002, nimesulide was withdrawn from the Finnish mar-
ket because of unacceptable hepatoxicity and then in
May 2002 it was withdrawn from the Spanish market.
Data from the Spanish Pharmacovigilance System re-
ported a higher rate of hepatic injury with nimesulide
than with other NSAIDs during the 1990s (Maciá et al.,
2002)

At therapeutic doses, nimesulide does not appear to
precipitate asthma in NSAID-sensitive asthmatics. This
supports the concept that aspirin-induced asthma is
caused by inhibition of COX-1 (Bianco et al., 1993;
Senna et al., 1996; Gryglewski, 1998; Bennett, 2000).
Prolonged treatment with nimesulide has delayed pre-
mature labor for up to 34 weeks without serious fetal
side effects and resulted in a successful delivery (Sawdy
et al., 1997).

A number of actions of nimesulide demonstrated in
vitro may contribute to its therapeutic anti-inflamma-
tory effects in vivo. These include, inhibition of neutro-
phil function (Ottonello et al., 1992; Capecchi et al.,
1993; Maffei et al., 1995), reduction of collagenase syn-
thesis (Barracchini et al., 1998), inhibition of histamine
action (Berti et al., 1990), and protection of chondrocytes
against apoptosis (Bennett, 2001; Mukherjee et al.,
2001b).

2. Etodolac. Etodolac has been available for clinical
use in Europe and North America for many years. It has
a pyranocarboxylic acid structure (Fig. 11), which in a
range of preclinical tests showed an anti-inflammatory
effect without producing damage to the stomach mucosa
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(Jones, 2001). On human recombinant enzymes,
etodolac had an 11-fold greater potency for inhibition of
COX-2 than for COX-1 and an 8-fold selectivity for
COX-2 over COX-1 in the human whole blood assay
(Glaser, 1995). This was confirmed in the modified Wil-
liam Harvey whole blood assay in which a 10-fold selec-
tivity for COX-2 over COX-1 was recorded (Warner et
al., 1999).

In various randomized double-blind clinical trials in
more than 2500 OA patients lasting from 6 to 12 weeks,
600 mg of etodolac daily was equally efficacious as
naproxen 1000 mg/day, piroxicam 20 mg/day, diclofenac
150 mg/day, and tenoxicam 20 mg/day (Platt, 1989; Ba-
con, 1990; Porzio, 1993; Schnitzer and Constantine,
1997). In a 12-week randomized double blind study in
RA, 600 mg/day etodolac had comparable efficacy with
20 mg/day piroxicam (Lightfoot, 1997) and in a 6-week
randomized trial, 600 mg/day etodolac was equal in ef-
ficacy to 100 mg/day indomethacin (Delcambre, 1990). A
long-term double blind trial lasting for 3 years with 1446
RA patients, showed that 300 mg/day or 1000 mg/day
etodolac had comparable efficacy to 2400 mg/day ibupro-
fen (Neustadt, 1997). The cumulative incidence of gas-
trointestinal (GI) ulcers or bleeds over the 3 year period
amounted to two patients on each dose of etodolac
(0.43% and 0.67%) and nine patients on ibuprofen
(4.74%).

The safety of etodolac, particularly its toxicity to the
GI tract has been evaluated in 2629 patients enrolled in
double blind and open-label clinical trials and in 8334
patients taking etodolac in postmarketing surveillance
studies during the past 14 years (Lightfoot, 1991; Schat-
tenkirchner, 1991). The incidence of GI ulceration and
bleeding in patients receiving etodolac was 0.42% (11
patients of 2629) in clinical trials and 0.06% (5 patients
of 8334) in postmarketing surveillance studies. Studies
in healthy volunteers reported that fecal blood loss with
etodolac was similar to that seen with placebo, but less
than the GI blood loss with aspirin, ibuprofen, naproxen,
or indomethacin (Ryder et al., 1983; Salom et al., 1984;
Arnold et al., 1985; Lanza and Arnold, 1989; Leese,
1992). A 7-day endoscopic study by Lanza et al. (1987) in
72 healthy volunteers assessed GI erosions with
etodolac as no greater than with placebo and signifi-
cantly less than with ibuprofen, naproxen, or indometh-
acin. Russell et al. (1991) compared the GI safety of
etodolac (300 mg twice daily) and naproxen (500 mg
twice daily) in 30 RA patients for 4 weeks. Only 3 of 15
patients receiving etodolac developed upper GI mucosal
lesions, whereas 8 of 15 patients treated with naproxen
demonstrated lesions of the upper GI tract. Data from
the Arthritis, Rheumatism and Aging Medical Informa-
tion System (ARAMIS) indicates that etodolac (on the
basis of data for 88 patient years) and nabumetone
(based on data for 221 patient years) are the only two
established NSAIDs that are not associated with serious

GI bleeds or other significant events requiring hospital-
izations.

The renal toxicity of etodolac has been reviewed in 16
double blind open-label clinical trials involving 1382
patients with OA or RA. The trials lasted from 4 to 52
weeks, and patients received 50 to 600 mg/day etodolac.
The risk of renal function impairment was no greater
among patients treated with etodolac than those receiv-
ing placebo (Shand et al., 1986).

3. Meloxicam. Meloxicam also emerged as a poten-
tial new drug from a preclinical search for an anti-
inflammatory drug with a low propensity to damage the
stomach mucosa. It was first registered in 1995 and is
now marketed in more than 100 countries for OA, RA,
and ankylosing spondylitis. Its chemical structure is
that of an enolcarboxamide (Fig. 11) and it has been
recognized as a selective COX-2 inhibitor since 1994.
The 5-methyl group on the thiazolyl ring of meloxicam
can enter the side pocket at the active site of COX-2.
Meloxicam has a 100-fold selectivity in favor of COX-2 in
microsomal preparations of human recombinant en-
zymes (Churchill et al., 1996; Pairet et al., 1998) and a
10-fold selectivity for COX-2 in the human whole blood
assay (Patrignani et al., 1997; Warner et al., 1999);
however, in the modified William Harvey whole blood
assay, a 25-fold selectivity for COX-2 over COX-1 has
been reported (Warner et al., 1999).

In animal studies, meloxicam had potent anti-inflam-
matory activity with less inhibition of PGE2 production
in the stomach and kidneys than standard NSAIDs (En-
gelhardt, 1996). Meloxicam was also more potent in re-
ducing edema of the inflamed rat paw than indometha-
cin, piroxicam, diclofenac, or naproxen (Engelhardt et
al., 1995; Engelhardt, 1996) and produced analgesia in
rat and dog models of inflammatory pain (Cross et al.,
1997; Laird et al., 1997; Santos et al., 1998). At thera-
peutic doses of 7.5 or 15 mg, meloxicam did not reduce
platelet aggregation or prolong bleeding time ex vivo
(Stichtenoth et al., 1997; De Meijer et al., 1999; Panara
et al., 1999; Tegeder et al., 1999), although thromboxane
formation by platelets was inhibited by 35% after 15 mg
of meloxicam. This demonstrated the low inhibitory ac-
tivity against COX-1 of meloxicam in vivo.

A total of 20,084 patients were treated with meloxi-
cam in early clinical efficacy and safety studies (Degner
et al., 2001). These trials showed that meloxicam was as
effective as diclofenac or piroxicam (Hosie et al., 1996,
1997; Linden et al., 1996; Goei et al., 1997) and more
effective than placebo (Lund et al., 1998) in patients
diagnosed with OA. Similarly, trials in patients with RA
demonstrated that in doses of 7.5, 15, or 22.5 mg, meloxi-
cam was as effective as comparator NSAIDs in estab-
lished doses for periods of up to 18 months (Huskisson et
al., 1994, 1996; Wojtulewski et al., 1996; Lemmel et al.,
1997).

Two large-scale, prospective, multicenter trials, the
Meloxicam Large-Scale International Study Safety As-
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sessment (MELISSA) and the Safety and Efficacy Large-
Scale Evaluation of COX-Inhibiting Therapies (SE-
LECT) compared 7.5 mg/day meloxicam with 100 mg of
slow release diclofenac (MELISSA) or 20 mg/day piroxi-
cam (SELECT) for 28 days in OA patients. In the MEL-
ISSA (Hawkey et al., 1998) trial during which 4635
patients were treated with meloxicam and 4688 patients
with diclofenac, fewer GI adverse events were recorded
for meloxicam-treated patients (13%) than for patients
receiving diclofenac (19%; P � 0.001). There were 5
patient days of hospitalization in patients on meloxicam
compared with 121 with diclofenac. In the SELECT trial
(Dequeker et al., 1998), comparing 4320 patients treated
with meloxicam to 4336 patients receiving piroxicam,
both drugs had equal efficacy, but the incidence of GI
adverse events was lower in the meloxicam than in the
piroxicam group (10.3% versus 15.4%; P � 0.001). Six-
teen patients had perforations, ulcerations, or bleeding
(PUBs) of the upper GI tract in the piroxicam group
compared with seven in the meloxicam group (relative
risk piroxicam: meloxicam � 1.4). A systematic review of
published clinical trials covering all treatments showed
significant reductions in risk of GI adverse events, with-
drawals due to GI adverse events, and dyspepsia by
36%, 41%, and 27% for meloxicam relative to comparator
NSAIDs (Schoenfeld, 1999).

A controlled postmarketing study by Degner et al.
(2000) assessed the efficacy and GI tolerability of
meloxicam during 6 months under prescribing condi-
tions. Results from 2530 patients receiving meloxicam
were compared with 1996 patients treated with diclofe-
nac, ibuprofen, piroxicam, or indomethacin. Fewer GI
adverse reactions were reported for meloxicam-treated
patients than for those receiving other NSAIDs (1.8%
versus 3.2%; P � 0.003). Lanes et al. (2000), however,
estimated the baseline risk of an upper GI event in the
United Kingdom to be higher among meloxicam users
than in patients treated with other NSAIDs, since pa-
tients who received meloxicam were characterized by a
recent history of dyspepsia, gastritis, peptic ulcer, or
treatment with acid-suppressing drugs. A prescription-
monitoring study involving 19,087 patients in the
United Kingdom reported that upper gastrointestinal
adverse events occurred more frequently in patients
with a past history of gastrointestinal disorders (Martin
et al., 2000).

4. Celecoxib. Celecoxib (Celebrex) was developed by
Monsanto/Searle after the cloning of COX-2 in 1991,
specifically for its inhibitory activity against COX-2,
when it became clear that inhibition of COX-1 resulted
in removal of protective PGs and injury to the gastric
mucosa. The sulfonamide group on celecoxib (Fig. 11)
binds into the side pocket within the channel that forms
the active site of COX-2 and confers COX-2-selectivity
on celecoxib and its analogs. In the initial stages of its
action, celecoxib inhibits COX-2 competitively, but this
competitive inhibition becomes converted into an irre-

versible, slow, time-dependent inhibition; however, cele-
coxib weakly inhibits COX-1 by a simple, easily reversed
competitive inhibition (Copeland et al., 1994; Gierse et
al., 1995).

In a range of in vitro assays, celecoxib demonstrated
155- to 3200-fold selectivity for COX-2 over COX-1
(Gierse et al., 1999). The selectivity measured by the
human whole blood assay and by the modified William
Harvey whole blood assay has been much lower than
these estimates (Warner et al., 1999). One explanation
may be that the time-dependent element is missing from
the previous in vitro assays, so they provide an artifi-
cially high estimate of selectivity. It has also been sug-
gested that a more relevant evaluation of the potential
in vivo GI toxicity can be provided by measuring the
percentage of inhibition of COX-1 at drug concentrations
that inhibit COX-2 activity by 80%. This is the amount
of COX-2 inhibition exerted by anti-inflammatory drugs
at therapeutic doses (Warner et al., 1999). The higher
the COX-1 inhibitory activity at these drug concentra-
tions, the greater the likelihood of damage to the gastric
mucosa.

In rat models of inflammation and pain, such as ad-
juvant-induced arthritis or carrageenan-induced paw
edema, celecoxib effectively reduced paw swelling and
responses to noxious stimuli at ED50 doses of 0.37 to 34.5
mg/kg given orally (Seibert et al., 1994; Penning et al.,
1997; Tindall, 1999; Smith et al., 1998a). In addition,
celecoxib in doses up to 200 mg/kg (Penning et al., 1997)
did not produce gastric damage in rats. On the basis of
extensive clinical trials, celecoxib was registered by the
U.S. Food and Drug Administration (FDA) in December
of 1998 for therapeutic use in OA and RA and, since
2001, acute pain.

a. Clinical Efficacy. The efficacy of celecoxib in OA
was established in several double blind clinical studies
lasting up to 12 weeks that included patients with OA of
the knee and hip. Celecoxib in doses of 50 to 200 mg
b.i.d. was compared with placebo, 500 mg of naproxen
b.i.d., 75 mg of diclofenac b.i.d., or 800 mg ibuprofen
t.i.d. (Bensen et al., 1999; Geis et al., 1999b; Lefkowith
et al., 2000a,b; Williams et al., 2000b). Celecoxib was as
effective as therapeutic doses of conventional NSAIDs
and the most effective dose of celecoxib in OA was found
to be 200 mg/day in a once daily regimen. A 12-week
study in 1093 patients and a 6-week trial in 688 patients
demonstrated that celecoxib was as effective as
naproxen or diclofenac in relieving signs and symptoms
of OA of the knee (Bensen et al., 1999). A total of 1061
patients with OA of the hip were studied for 12 weeks
while receiving celecoxib, naproxen, or placebo. Cele-
coxib (100 or 200 mg b.i.d.) was as effective as naproxen
and more efficacious than placebo (Geis et al., 1999a).

Celecoxib also demonstrated equal efficacy to thera-
peutic doses of naproxen or diclofenac in relieving the
symptoms of RA. The maximum effective dose of cele-
coxib in RA was found to be 200 mg b.i.d. (Emery et al.,
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1999; Simon et al., 1999). In a 12-week study comparing
the efficacy and tolerability of 100 to 400 mg of celecoxib
b.i.d. with 500 mg of naproxen b.i.d. in 1149 patients
(Simon et al., 1999), all doses of celecoxib were equally
effective and as efficacious as naproxen in reducing the
symptoms of RA.

The analgesic effects of celecoxib were confirmed in
patients undergoing tooth extraction or orthopedic sur-
gery (Lefkowith, 1999; Gimbel et al., 2001). A double
blind study of post orthopedic pain in 418 patients com-
pared 200 mg of celecoxib with 10 mg of hydrocodone/
1000 mg of paracetamol. Both treatments were effective
in producing analgesia with fewer doses of celecoxib
needed to ease the pain (Gimbel et al., 2001).

b. Gastrointestinal Safety. Since more than 100,000
patients in the United States experience PUBs every
year as a result of taking NSAIDs and 16,500 die from
ulcers and bleeding (Fries et al., 1991; Singh et al., 1996;
Fries, 1999; Singh and Triadafilopoulos, 1999), it was
essential to establish that the selective COX-2 inhibitors
would cause less GI mucosal toxicity than comparable
nonselective COX inhibitors. To assess GI safety rigor-
ously, doses which were two and four times the maxi-
mum clinically effective doses for RA and OA were eval-
uated. The incidence of upper GI ulceration with
celecoxib compared with standard NSAIDs and placebo
was investigated endoscopically in 2089 patients with
OA and RA during trials lasting up to 24 weeks (Emery
et al., 1999; Simon et al., 1999; Gimbel et al., 2001).
Celecoxib treatment even at twice the usual dose used
for RA and four times the usual dose used for OA did not
cause more GI ulcers than placebo. A 12-week study in
1149 patients with RA showed that naproxen produced
more ulcers than even the highest dose of celecoxib (400
mg b.i.d.) (Simon et al., 1999). When 200 mg of celecoxib
b.i.d. was compared with 75 mg of diclofenac b.i.d. for 24
weeks in 430 patients, more gastroduodenal ulcers were
detected in patients treated with diclofenac (15%) than
in patients treated with celecoxib (4%) (Emery et al.,
1999).

Ulcer complications manifested as perforation, bleed-
ing, and gastric outlet obstruction (POBs) are more clin-
ically relevant than endoscopically observed ulcers. A
meta-analysis of upper GI events in patients with RA or
OA enrolled in 14 studies recorded less frequent GI
events with celecoxib than with conventional NSAIDs.
Fourteen controlled studies lasting 2 to 24 weeks com-
pared 6376 patients receiving celecoxib with 2768 pa-
tients receiving standard doses of naproxen, diclofenac,
or ibuprofen. Of the eleven serious upper GI events
recorded, nine were in patients treated with conven-
tional NSAIDs and two were among patients treated
with celecoxib. The risk of serious upper GI events re-
lated to conventional NSAIDs was 1.68% greater than if
the patients had received celecoxib. In addition, cele-
coxib treatment was not associated with a greater risk of
GI adverse events than placebo (Goldstein et al., 2000).

The Celecoxib Long-Term Arthritis Safety Study
(CLASS) determined the incidence of upper GI ulcer
complications among arthritis patients receiving cele-
coxib or conventional NSAIDs for 6 months (Silverstein
et al., 2000). A supratherapeutic dose of celecoxib (400
mg b.i.d.) was compared with therapeutic doses of ibu-
profen (800 mg t.i.d.) and diclofenac (75 mg b.i.d.) in
approximately 8000 patients (Silverstein et al., 2000).
Anti-thrombotic doses of aspirin were allowed during
the study. For all patients, the annualized incidence
rates of upper GI ulcer complications alone or combined
with symptomatic ulcers for celecoxib compared with
conventional NSAIDs were 0.76% versus 1.45% (P �
0.092) and 2.08% versus 3.54% (P � 0.023); however, the
incidence rates of ulcer complications alone or combined
with symptomatic ulcers for celecoxib compared with
standard NSAIDs in patients simultaneously taking as-
pirin were 2.01% versus 2.12% (P � 0.92) and 4.70%
versus 6.00% (P � 0.49). These data indicate that ad-
ministration of anti-thrombotic doses of aspirin concom-
itantly with celecoxib reduces the upper GI safety con-
ferred by the selective COX-2 inhibitor. Further analysis
of the CLASS study extended to 12 months, reported
that the frequency of ulcer complications with celecoxib,
whether or not aspirin was administered at the same
time, became no different from those recorded in pa-
tients receiving diclofenac. Paradoxically, patients tak-
ing cardioprotective doses of aspirin with celecoxib ex-
perienced a greater incidence of complicated ulcers than
patients receiving aspirin and ibuprofen (FDA Celecoxib
Hearing July 2, 2001).

c. Absence of Other Adverse Events. Celecoxib does
not affect platelet function, indicating a lack of inhibi-
tion of COX-1 in platelets (Geis et al., 1999b; Leese et al.,
2000). Platelet aggregation, bleeding time, and serum
TXB2 concentrations were not altered by suprathera-
peutic doses of celecoxib, whereas treatment with
naproxen increased bleeding time, decreased platelet
aggregation, and reduced serum TXB2 levels (Leese et
al., 2000).

Celecoxib may demonstrate less renal toxicity than
conventional NSAIDs. In a study in healthy elderly sub-
jects lasting for 10 days, celecoxib had no effect on GFR,
whereas naproxen reduced GFR by 6% on day 1 of the
study and by 9% on day 6 (Catella-Lawson et al., 1999).

It has been suggested that inhibition of endothelial
COX-2, which synthesizes prostacyclin, may result in
over-activity of prothrombotic TXA2 produced by plate-
lets and an increase in thromboembolic cardiovascular
events (McAdam et al., 1999). The CLASS trial demon-
strated that celecoxib treatment was not associated with
any greater incidence of cerebrovascular accidents or
myocardial infarction than conventional NSAIDs (Sil-
verstein et al., 2000). The incidence of hepatic adverse
events was higher among patients treated with conven-
tional NSAIDs such as diclofenac, naproxen, or ibupro-
fen than with celecoxib (Maddrey et al., 2000).
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5. Rofecoxib. Rofecoxib (Vioxx) was developed by
Merck Frosst in the early 1990s. Having cloned and
purified human COX-2 from a recombinant baculovirus
system (Cromlish et al., 1994), the Merck Frosst group
set up various in vitro and in vivo assays to search for
compounds which would be selective inhibitors of
COX-2. Compounds with a methylsulfonyl group in the
para position of a phenyl ring proved to be potent and
selective COX-2 inhibitors (Fig. 11). The methylsulfonyl
group fits into the side pocket of the channel, which
forms the catalytic site of COX-2 and provides better
selectivity but less bioavailability than the sulfonamide
series on which celecoxib is based. It also avoids the
possible allergic reactions, such as skin rashes, which
are typical of sulfonamides. A lactone ring was then
incorporated into the molecule to improve the oral bio-
availability. The resulting compound had the best over-
all profile and was designated as rofecoxib or Vioxx.

Rofecoxib was a potent and selective inhibitor of
COX-2 in a large number of in vitro assays including
PGE2 production by osteosarcoma cells, selectively ex-
pressing COX-2 and PGE2 production by U937 cells
expressing only COX-1 (Wong et al., 1997). It was 77
times more potent in inhibiting purified human COX-2
than human COX-1. Its in vitro activity in the human
whole blood assay demonstrated a 36-fold selectivity for
COX-2 compared with the 8-fold selectivity estimated
for celecoxib. Oral administration of 1 g of rofecoxib in
humans had no effect on TXA2 production ex vivo from
platelets in the COX-1 whole blood assay (Ehrich et al.,
1999). Inhibition of platelet COX-1 and monocyte COX-2
was also assessed ex vivo in 25 patients treated for 7
days with 50 mg/day rofecoxib or 50 mg of diclofenac
t.i.d. Both drugs caused more than 90% suppression of
COX-2 whereas COX-1 activity was not affected by ro-
fecoxib but reduced by more than 50% by diclofenac
(Patrignani et al., 2000).

Rofecoxib was essentially equipotent to indomethacin
in rat models of pain and inflammation such as carrag-
eenan-induced paw edema, paw analgesia, pyresis, and
adjuvant arthritis (Chan et al., 1999; Prasit et al., 1999).
The low incidence of GI damage with rofecoxib was
demonstrated in both animal and human studies. For
example, oral dosing of 300 mg/kg rofecoxib to rats for 14
days did not produce GI lesions, whereas a single dose of
3 mg/kg indomethacin caused obvious gastric damage.
In the fecal 51Cr excretion assay, red blood cells are
labeled with 51Cr and the amount of 51Cr recovered in
the feces provides a measure of GI permeability. A daily
oral dose of 200 mg/kg rofecoxib for 5 days in either rats
or squirrel monkeys did not show any 51Cr leakage
whereas a single dose of indomethacin or diclofenac at
10 mg/kg caused a significant increase in 51Cr excretion
(Prasit et al., 2001). This lack of GI toxicity of rofecoxib
was confirmed in human studies using 51Cr as a mea-
sure of GI integrity (Sigthorsson et al., 2000) or by

endoscopic examination of the upper GI tract for PUBs
(Laine et al., 1999; Langman et al., 1999).

Rofecoxib was approved by the FDA and launched in
the United States in May of 1999 for treatment of acute
pain as well as osteoarthritic pain. It has now also been
registered in many European countries, Canada, and
Australia. In extensive clinical trials, rofecoxib was
shown to possess anti-inflammatory and analgesic activ-
ity equal to nonselective NSAIDs (Morrison et al.,
1999a,b; Cannon et al., 2000; Day et al., 2000) but with
much greater GI safety and tolerability (Laine et al.,
1999; Langman et al., 1999; Lanza et al., 1999; Hunt et
al., 2000; Sigthorsson et al., 2000).

a. Clinical Efficacy. Rofecoxib reduces fever that is
largely mediated by induction of COX-2. In a trial in-
cluding 94 febrile patients with viral infections, rofe-
coxib effectively counteracted the fever (Schwartz et al.,
1999).

The analgesic efficacy of rofecoxib was assessed in
several studies of postoperative dental pain and in pos-
torthopedic surgical pain. In studies of dental pain,
doses of 12.5 to 500 mg of rofecoxib were more effective
than placebo, and 50 mg of rofecoxib provided pain relief
equal to 400 mg of ibuprofen but of longer duration. In a
trial comparing rofecoxib with naproxen and placebo, 50
mg of rofecoxib, recognized as the maximum effective
dose, gave an analgesic efficacy better than placebo and
similar to 550 mg of naproxen (Morrison et al., 1999a).
In another dental pain study, 50 mg of rofecoxib, 400 mg
of ibuprofen, or 200 mg of celecoxib were more effective
in relieving pain than placebo, and rofecoxib and ibupro-
fen were more effective than celecoxib (Malmstrom et
al., 1999).

In patients with postorthopedic surgical pain follow-
ing hip or knee replacement, 50 mg of rofecoxib provided
pain relief similar to 550 mg of naproxen but with a
longer duration of action (Reicin et al., 2001). In 127
patients with primary dysmenorrhea, rofecoxib (25 or 50
mg) provided analgesia similar to that demonstrated by
naproxen (550 mg) (Morrison et al., 1999b).

Extensive clinical trials in OA patients demonstrated
the effectiveness of rofecoxib compared with the nonse-
lective NSAIDs normally used to treat OA. Doses of 12.5
and 25 mg of rofecoxib were found to provide optimal
efficacy during 6 weeks of treatment (Ehrich et al., 1997,
1999) and to be more effective than placebo (Truitt et al.,
1999; Day et al., 2000; Saag et al., 2000). In phase III
clinical trials, treatment with rofecoxib (12.5 or 25 mg/
day) for 1 year was as effective as treatment with ibu-
profen (800 mg t.i.d) or diclofenac (50 mg t.i.d.) (Cannon
et al., 2000; Saag et al., 2000).

A 6-week trial of rofecoxib in RA patients showed that
43.8% of patients improved with 25 mg/day and 49.7%
responded to 50 mg/day. Both doses of rofecoxib were
more effective than placebo (Schnitzer et al., 1999). Ro-
fecoxib was approved for RA in 2002.
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b. Gastrointestinal Safety. Information on GI safety
of rofecoxib has been obtained from clinical efficacy tri-
als in approximately 5400 patients with RA, OA, and
acute pain receiving doses of rofecoxib ranging from 5 to
1000 mg (Cannon et al., 2000; Day et al., 2000; Saag et
al., 2000). Regular users of NSAIDs suffer a 1 to 4%
annual incidence of PUBs (Singh, 1998) and one-third of
PUB-related mortality in patients over 65 years is prob-
ably due to the use of NSAIDs (Griffin et al., 1991).

During studies conducted in healthy human volun-
teers, rofecoxib (25 or 50 mg/day) produced less change
in intestinal permeability than indomethacin (50 mg
t.i.d.) and effects similar to placebo (Sigthorsson et al.,
2000). Fecal blood loss in healthy subjects receiving ro-
fecoxib (25 or 50 mg/day) for 4 weeks was less than with
ibuprofen (800 mg t.i.d.) and no more than with placebo
(Hunt et al., 2000). An endoscopic study in 170 healthy
subjects (Lanza et al., 1999) showed that rofecoxib (250
mg/day for 7 days) produced fewer GI mucosal lesions
than ibuprofen (2400 mg/day) or aspirin (2600 mg/day)
and no more damage than placebo. In two other endo-
scopic trials lasting 6 months, OA patients receiving
rofecoxib (25 or 50 mg/day) manifested a lower incidence
of gastroduodenal ulcers than a comparator group
treated with ibuprofen (2400 mg/day) (Laine et al.,
1999).

A combined analysis of PUBs among 5435 OA patients
(Langman et al., 1999) in eight clinical trials lasting 12
months showed a lower incidence of PUBs in the rofe-
coxib group than in the group treated with all other
NSAIDs with a relative risk of 0.45 (P � 0.001) (Lang-
man et al., 1999). In addition, fewer patients discontin-
ued treatment with rofecoxib due to GI adverse events
than patients treated with nonselective NSAIDs.

The Vioxx Gastrointestinal Outcomes Research Study
(VIGOR), carried out in approximately 8000 patients
with RA, compared upper GI events during treatment
with rofecoxib (50 mg/day) or naproxen (500 mg b.i.d.)
for 9 months (Bombardier et al., 2000). The primary end
points recorded were the rates of gastroduodenal perfo-
ration or obstruction, upper GI bleeding, or symptomatic
gastroduodenal ulcers. The rates of these complicated
events were 0.6 per 100 patient-years with rofecoxib and
1.4 per 100 patient-years with naproxen (relative risk,
0.4; 95% confidence limits, 0.2 to 0.8; P � 0.005); how-
ever, the incidence of myocardial infarction was higher
among patients in the rofecoxib group than among those
in the naproxen group (0.4% versus 0.1%; relative risk,
0.2; 95% confidence limits, 0.1 to 0.7) even though the
mortality rate from cardiovascular causes was similar in
the two groups. It has been proposed that inhibition of
COX-2, which synthesizes PGI2 in vascular endothelial
cells, increases the risk of myocardial infarction after
treatment with rofecoxib (McAdam et al., 1999). Alter-
nately, naproxen may demonstrate an anti-platelet ef-
fect through its potent COX-1-inhibiting action and re-
duce the incidence of heart attacks.

c. Renal Safety. NSAIDs can alter renal function by
reducing GFR, renal blood flow, and sodium and potas-
sium excretion. These actions result in fluid retention,
hypertension, edema, and hyperkalemia. Since COX-2 is
constitutively expressed in the kidney its selective inhi-
bition may cause adverse renal effects. In a placebo-
controlled study in healthy human subjects, rofecoxib
(50 mg q.i.d.) and indomethacin (50 mg t.i.d) decreased
urinary sodium excretion during the first 72 h of treat-
ment. The GFR was not altered by rofecoxib but reduced
by indomethacin (Catella-Lawson et al., 1999). Both ro-
fecoxib and indomethacin reduced GFR in elderly pa-
tients with diminished renal function (Swan et al., 1999)
or in elderly subjects administered a sodium restricted
diet (Swan et al., 2000). Thus, under certain conditions,
inhibition of COX-2 may produce effects on renal func-
tion similar to the nonselective NSAIDs.

6. Second Generation Cyclooxygenase-2-Selective In-
hibitors. Valdecoxib (Bextra), the successor to cele-
coxib, was recently approved in the United States for
treatment of the signs and symptoms of OA, RA, and
menstrual pain (Talley et al., 2000). In the human whole
blood assay, it is more selective for COX-2 than celecoxib
having a COX-2 selectivity ratio of 30, compared with a
ratio of 7.6 for celecoxib (Riendeau et al., 2001). In a dose
of 10 mg/day, valdecoxib gave 24 h of pain relief in
arthritic patients. Trials in more than 5000 patients
have shown a similar efficacy to standard NSAIDs but
with much reduced side effects. Pfizer has also filed for
FDA approval for parecoxib, an injectable pro-drug of
valdecoxib for the treatment of acute pain associated
with surgery or trauma (Cheer and Goa, 2001).

The successor to rofecoxib, etoricoxib (Arcoxia), has
been approved for marketing in Mexico and Europe but
not yet in the United States. Its selectivity ratio in the
human whole blood assay was 106 compared with selec-
tivity for COX-2 of 35 for rofecoxib (Riendeau et al.,
2001).

B. Neoplastic Disease

Prostanoids may be involved in the pathogenesis of
cancers. Early studies have recognized that growth fac-
tors, tumor promoters, and oncogenes induce prostanoid
synthesis (Levine, 1981). It is now recognized that such
effects are due to the induction of COX-2 in various cell
types (Dubois et al., 1998). Early studies also pointed out
that metabolism of AA via the COX pathway is en-
hanced in various human tumors, compared with the
nontumorigenic counterparts (Levine, 1981). For exam-
ple, mammary tumors secrete high levels of PGE2 com-
pared with the normal adjacent mammary tissue (Kar-
mali et al., 1983). The functional role of such a finding
has not been clear; however, several theories have been
proposed on the role of tumor-derived prostanoids. For
example, induction of angiogenesis, induction of tumor
cell proliferation, suppression of immune response, and
inhibition of cell death (Taketo, 1998a,b). Early work on
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animal models of tumorigenesis, indicated that NSAIDs
profoundly inhibit colon and breast tumors induced by
carcinogens in rodents (Reddy et al., 1987). These data,
although correlative, strongly suggested that products of
the COX pathway may participate in carcinogen-in-
duced tumorigenesis.

These evidences were further supported by epidemio-
logical studies of humans who use aspirin and other
NSAIDs chronically; it was found in various studies that
incidence of various cancers, including, colon, intestinal,
gastric, breast, and bladder cancers, were reduced up to
40 to 50% (Thun et al., 2002). These large-scale epide-
miologic studies strongly suggested that the COX path-
way is involved in the cancer chemopreventive activity
of NSAIDs in the GI tract (Baron, 2003).

Aspirin and sulindac are the best studied NSAIDs
with regard to chemoprevention and induction of tumor
regression in the colon/rectum, respectively; however,
all NSAIDs may share these properties (Smalley et al.,
1999). Epidemiologic evidence implicates both COX-1
and COX-2 in the chemopreventive roles of NSAIDs.
Aspirin, which is a preferential COX-1 inhibitor, has
recently been shown in three randomized placebo-con-
trolled trials to be “moderately effective” in preventing
the appearance of sporadic colorectal adenomas in pa-
tients with a history of these tumors (Baron et al., 2003;
Benamouzig et al., 2003; Sandler et al., 2003). Signifi-
cantly, doses of only 80 to 325 mg/per day, which would
be expected to inhibit primarily COX-1, were sufficient
to prevent adenoma incidence by 45%, although there
was some variation in the degree of effect between stud-
ies (Huls et al., 2003). COX-2 selective drugs celecoxib
and rofecoxib have also been shown to reduce adenoma
incidence and to evoke tumor regression in patients with
familial polyposis (Phillips et al., 2002; Higuchi et al.,
2003). Duodenal adenomas, which are otherwise un-
treatable, show some reduction by treatment with cele-
coxib (Phillips et al., 2002).

Many studies have examined the expression of COX-1
and -2 in tumor tissues from various cancers. Early
studies by Eberhart et al. (1994), Kargman et al. (1995),
and Sano et al. (1995) showed that COX-2 is overex-
pressed in �80% of colorectal cancer tissues. Interest-
ingly, epithelial cells as well as inflammatory cells and
stromal cells express this enzyme. In contrast, COX-2
expression is detectable but lower in adjacent normal
tissues. COX-1 isoenzyme is expressed in both normal
and tumor tissue. This finding has been repeatedly con-
firmed in other tumors such as pancreas, skin, gastric,
bladder, lung, head and neck, among others (Thun et al.,
2002). These studies suggested that COX-2 may play a
role in tumor formation and/or maintenance.

After the development of the COX-2 inhibitors, they
were employed in animal models of carcinogenesis
(Kawamori et al., 1998; Harris et al., 2000). They were
also shown to be effective in reducing the incidence of
carcinogen-induced tumors; however, nonselective in-

hibitors of COX and derivatives of some NSAIDs that do
not inhibit COX enzyme activity (for example, sulindac
sulfone) were also effective, raising questions about the
requirement of COX enzymes in tumorigenesis (Marx,
2001).

Various other lines of evidence also cast a doubt on the
causal role of COX enzymes in tumorigenesis. Aspirin
and salicylates, albeit at high doses, were shown to
inhibit the I�B kinase pathway, suggesting that addi-
tional targets exist for the NSAIDs (Yin et al., 1998). In
addition, sulindac sulfone was shown to inhibit the
PPAR� pathway, which was induced by APC gene dele-
tion (He et al., 1999); however, recent studies indicate
that PPAR� is not required for sulindac-induced epithe-
lial cell apoptosis, which occur at very high nonphysi-
ological levels of this drug (Park et al., 2001). In addi-
tion, NSAIDs at high doses inhibited oncogene-induced
transformation of mouse embryonic fibroblasts derived
from COX-1 and -2 double null embryos (Zhang et al.,
1999). Furthermore, neither COX-1 nor COX-2 acted as
classical oncogenes in cellular models of transformation
(Narko et al., 1997; Trifan et al., 1999). Indeed, overex-
pression of the COX enzymes was associated with cellu-
lar growth arrest in many cell types (Narko et al., 1997;
Trifan et al., 1999). Together, these studies have sug-
gested that overexpression of COX enzymes in tumors
may not be simply acting as oncogenes in tumor devel-
opment.

Oshima et al. (1996) provided definitive evidence that
COX-2 is required for intestinal tumorigenesis in the
Apc�715 deletion mouse model neoplasia. This mutation
results in the truncation of the APC tumor suppressor
gene, which regulates the level and activity of the
�-catenin protein. Enhanced levels of �-catenin results
in transcriptional activation of various growth regula-
tory genes, for example, c-myc, cyclin D1 via the TCF/
LEF family of transcriptional regulators. Thus, Apc�715

deletion mice develop intestinal polyps with a very high
penetrance (Taketo, 1998a). Deletion of the COX-2 gene
in these mice resulted in gene dose-dependent reduction
in polyps. In addition, COX-2 inhibitor also reduced
polyps in these mice. These data strongly suggested that
COX-2 expression is required for intestinal tumorigene-
sis (Oshima et al., 1996); however, the expression of
COX-2 was detected in the stromal tissues of the small
intestine and not in the epithelial compartment, sug-
gesting that it may function in a paracrine manner to
regulate epithelial cell transformation. Therefore, an
endocrine role for COX-2-derived prostanoids cannot be
ruled out from this study. Thus, these critical experi-
ments provided strong evidence that COX-2 is required
for intestinal tumorigenesis. Langenbach’s laboratory
showed that deletion of the COX-1 gene also attenuated
polyp formation (Langenbach et al., 1999b; Chulada et
al., 2000). These data further suggest that both COX-1
and -2 may be important in tumorigenesis. In addition,
in carcinogen-induced tumor initiation and promotion
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model in skin papilloma formation also exhibited similar
requirement for both COX-1 and -2 gene expression
(Langenbach et al., 1999b). Although papilloma num-
bers were decreased in both COX-1 and -2 deleted mice,
the phenotype of the skin polyps was distinct. For ex-
ample, papillomas formed in COX-2�/� mice showed
increased cellular apoptosis, increased differentiation of
keratinocytes, and formed small elongated polyps. In
contrast, COX-1-deficient animals formed larger dome-
topped polyps and did not show differences in keratino-
cyte apoptosis and differentiation (Langenbach et al.,
1999b). Takeda and colleagues (2003) have recently ad-
vanced the postulate that COX-1 expressed in intestinal
stromal cells provides basal expression of PGE2 suffi-
cient for polyps to grow to 1 mm, whereafter COX-2 and
microsomal PGE2 synthase are induced to support fur-
ther polyp growth and development of tumor vascula-
ture. These studies indicate that both COX-1 and -2
enzymes play complex roles in tissue homeostasis and
participate in multiple nodes of the tumorigenesis pro-
cess.

The question of whether COX-2 overexpression is suf-
ficient to induce tumorigenesis was recently addressed
(Liu et al., 2001). Liu et al. overexpressed the human
COX-2 gene in the mammary glands of transgenic mice
using the mouse mammary tumor virus promoter. This
promoter is highly selectively expressed in the mam-
mary epithelium and is hormonally induced. Thus, ex-
pression of mouse mammary tumor virus-linked trans-
genes is induced in the mammary glands during
pregnancy and lactation. Transgenic mice expressing
the human COX-2 gene exhibited high levels of COX-2
mRNA, protein, and enzymatic activity in the mammary
glands, particularly during pregnancy and lactation.
The expression of exogenous COX-2 gene did not influ-
ence the expression of COX-1 gene in the mammary
glands of transgenic mice. The COX-2 transgenic mice
showed precocious mammary gland differentiation,
which was characterized by premature expression of the
�-casein gene and premature lobuloalveolar develop-
ment in the virgin animals. These effects were reversed
by the administration of the COX inhibitor indometha-
cin, suggesting that they are mediated by secreted pro-
stanoids. The COX-2 transgenic mice underwent normal
pregnancy and lactation in the first cycle. Mammary
gland involution was delayed, which was associated
with decreased apoptosis of the mammary epithelial
cells. These findings were in concert with decreased
apoptosis observed in COX-2 overexpressing epithelial
cells. After repeated cycles of pregnancy and lactation,
however, the COX-2 transgenic mice developed tumors
in the mammary glands (Liu et al., 2001). The histology
of the mammary tumors indicated that invasive, meta-
static tumors of both alveolar and ductal histotypes were
observed. In addition, the tumors were focal in nature,
suggesting that COX-2 overexpression as well as other
mutagenic events were required to fully transform the

mammary epithelium. COX-2-induced tumors continued
to express COX-2 and contained lower levels of the ap-
optotic regulatory proteins Bax and Bcl-XL as well as
containing higher levels of the anti-apoptotic protein
Bcl-2 (Liu et al., 2001). These data suggest that ectopic
overexpression of COX-2 gene is sufficient to transform
the mammary gland after repeated cycles of pregnancy
and lactation (Liu et al., 2001). These data support the
notion that unregulated expression of COX-2, perhaps
induced by carcinogenic stimuli or other tumor promot-
ers is an important contributor of tumorigenesis. Recent
transgenic overexpression studies in which COX-2 was
targeted to the skin of transgenic mice also support this
concept (Neufang et al., 2001). In this study, hyperplasia
of the epidermis and abnormal sebaceous gland differ-
entiation was observed, although spontaneous skin tu-
mors did not develop (Neufang et al., 2001). Recent work
from the same group showed that carcinogen-induced
skin papilloma formation is enhanced in COX-2TG mice,
suggesting that COX-2 acts as a potent tumor progres-
sion factor in the skin (Marks et al., 2003)

Even though the effect of COX-2 to induce tissue
changes that ultimately lead to tumorigenesis is begin-
ning to be appreciated, the mechanisms involved are not
well understood. Many in vitro studies, however, sup-
port the notion that COX-2 overexpression inhibits ap-
optosis and that tumor angiogenesis is induced as well
(Dubois et al., 1998; Tsujii et al., 1998). Tsujii and
DuBois showed that overexpression of COX-2 in intesti-
nal epithelial cells resulted in enhanced E-cadherin ex-
pression and decreased apoptosis, when cells are in-
duced with butyrate (Tsujii and DuBois, 1995). Later
studies from the same laboratory indicated that PGE2
stimulation of these cells results in cell survival due to
the phosphatidylinositol 3-kinase/Akt pathway. In addi-
tion, epithelial cell motility and invasive behavior were
also induced (Sheng et al., 2001). The ability of COX-2
overexpression to inhibit apoptosis was observed in
other epithelial cells and neuronal PC-12 cells (Chang et
al., 2000) but not in ECV-304 bladder carcinoma cells
(Narko et al., 1997). Coupled with the finding that apo-
ptosis of mammary epithelial cells are altered in COX-2
transgenic mice (Liu et al., 2001), regulation of apoptosis
may be an important event in COX-2-induced tissue
changes that lead to tumorigenesis.

In addition, induction of angiogenesis by the COX-2
(and the COX-1 pathway) may contribute to the devel-
opment of tumors (Hla et al., 1993; Ben-Av et al., 1995;
Tsujii et al., 1998). Angiogenesis is regulated by a pleth-
ora of factors, the balance of which is thought to be
critical. As discussed above, COX-2 expression and se-
cretion of prostanoids such as PGE2 may induce angio-
genesis during cancer development; however, the reason
why normal tissue that produces PGE2 abundantly via
the COX-1 pathway fails to induce angiogenesis is not
understood. The enhanced production of COX-2, to-
gether with other changes that occur during cancer de-
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velopment, may contribute to the overall balance of the
angiogenic response during tumor development. Further
studies are needed to better define the molecular mech-
anisms involved in COX-2-induced tumorigenesis.

Evidence that NSAIDs reduce cancer incidence and
evoke tumor regression in the GI tract has been exten-
sively reviewed elsewhere (Dannhardt and Kiefer, 2001;
Dempke et al., 2001), as has overexpression of COX-2 in
epithelial cancers in humans (Howe et al., 2001; Kalgut-
kar and Zhao, 2001; Tsuji et al., 2001; Dixon, 2003). The
antineoplastic activity of NSAIDs is likely multifacto-
rial, but the induction of apoptosis is essential to the
ability of these drugs to cause tumor regression and may
also be integral to their ability to prevent tumor growth.
Induction in experimentally induced tumors in rodents
of tumor regression has been observed in several studies
(Oshima et al., 1996; Chiu et al., 1997; Ritland and
Gendler 1999; Jacoby et al., 2000). Giardello has also
reported an increase in apoptosis in the carcinomas of
the colon/rectum following 3 months of treatment with
sulindac (Pasricha et al., 1995). Currently the mecha-
nism(s) by which NSAIDs induce apoptosis in tumors of
the GI tract, and perhaps elsewhere, is unknown. Cyclo-
oxygenase and noncyclooxygenase pathways that have
been proposed to govern NSAID-induced apoptosis have
been reviewed elsewhere (Moore and Simmons, 2000;
Simmons and Wilson, 2001).

C. Alzheimer’s Disease

Epidemiologic evidence indicates that NSAID use is
associated with a lower incidence or risk of AD (McGeer
et al., 1996; Hendrie, 1997). An inverse relationship is
seen between NSAID use (particularly aspirin) and AD
incidence in case-controlled studies of patients who have
osteoarthritis, rheumatoid arthritis, or who use NSAIDs
for other purposes. A similar inverse correlation be-
tween NSAID use and AD was seen in a co-twin control
study of 50 elderly twins with AD onset separated by 3
years or more (Breitner et al., 1995). Both decreased risk
of AD among NSAID users as well as a decreased risk of
AD with increased duration of NSAID use was found in
the prospective Baltimore Longitudinal Study of Aging
(Stewart et al., 1997). In this study, 1686 participants
were followed for 15 years, and participants 55 and older
were assessed for AD. A decrease in cognitive decline
was also associated with NSAID use in the 1-year lon-
gitudinal Rotterdam Study (Andersen et al., 1995); how-
ever, another longitudinal study, The Medical Research
Council Treatment Trial of Hypertension in Older
Adults, found that increased beneficial cognitive effects
among NSAID users compared with controls was not
evident in AD patients over 74 (Prince et al., 1998). A
fourth longitudinal study also found no beneficial cogni-
tive effect of aspirin or other NSAIDs in AD patients
with a mean age of 80 (Henderson et al., 1997). Together
these studies suggest that the window of efficacy for
NSAID use may precede the age of 75; however, in a

recent case-control study of specific dementias including
AD, vascular, and other dementias in patients 75 and
older, a strong inverse correlation between NSAID us-
age and the presence of AD, but not other dementias,
was observed (Broe et al., 2000). This study suggests
that a lack of effect observed in older patients may be
due to confounding neurodegenerative conditions in el-
derly people that are not affected by NSAIDs.

A number of excellent reviews have recently explored
the complex and, as yet, unclear roles that COX
isozymes play in AD (O’Banion, 1999; McGeer, 2000, and
Pasinetti, 2001). This disease exhibits a strong inflam-
matory component initiated and/or exacerbated by fibril-
lar �-sheet �-amyloid deposits (Halliday et al., 2000).
Proinflammatory cytokines, acute phase proteins, pros-
taglandins, and other mediators of inflammation are
elevated in and around the senile plaques present in AD
brains. COX-2 has been reported to be increased in the
cortex of AD brains (Oka and Takashima, 1997; Kita-
mura et al., 1999); however, it is important to note that
COX-2 is also normally expressed in neurons of the
neocortex and hippocampus and appears to be preferen-
tially expressed in glutamatergic pyramidal neurons
(Kaufmann et al., 1996; Yasojima et al., 1999; Ho et al.,
2001). Within these neurons it shows a perinuclear sub-
cellular localization typical of other cells but also may be
found accumulated in dendrites and particularly in den-
dritic spines (Kaufmann et al., 1996, Thore et al., 1998).
Pasinetti and colleagues (Ho et al., 2001) have recently
correlated increased COX-2 expression in the CA2 and
CA3 subdivision of the hippocampal pyramidal layer
with increasing dementia through mild to severe stages.
Increased COX-2 in the CA1 subdivision was evident
only in severe stage AD.

The normal function of COX-2 in brain neurons is
unknown, and it is unclear whether long-term use of
COX-2 inhibitors will have a physiological effect through
inhibition of this function. COX-2 can be induced in
neurons, microglia, and astrocytes by a variety of neu-
rotoxic stimuli including hypoxia and excitotoxins, such
as kainic acid (Adams et al., 1996; Marcheselli and Ba-
zan, 1996; Tocco et al., 1997; Tomimoto et al., 2000). The
current debate is whether COX-2 induction after neuro-
nal insult serves to protect against cell death or promote
apoptosis in the expressing neuron itself or in neighbor-
ing neurons. Data using animal models and in vitro
systems support both protective (Kunz and Oliw, 2001)
and pro-apoptotic roles (Iadecola et al., 2001). Increased
neuronal PG synthesis resulting from increased COX-2
may evoke increased levels of other proinflammatory
agents produced by astroglial cells and cause neuronal
cell death. This is consistent with the finding that
NSAIDs result in a decrease in activated microglial cells
in AD patients and in the Tg2576 mouse, which is pre-
disposed to an AD-like syndrome (Lim et al., 2000; Hooz-
emans et al., 2001). Ibuprofen treatment in these mice
decreases concentrations of inflammatory mediators
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such as IL-1�, slows �-amyloid plaque deposition, and
decreases the number of dystrophic neurites (Lim et al.,
2000). These findings suggest that COX isozymes influ-
ence the rate of �-amyloid secretion or deposition as well
as function in any inflammatory process that results
from plaque formation; however, NSAIDs used in both
human and animal studies described above were nonse-
lective toward COX enzymes or COX-1 preferential and
suggests that COX-1 and COX-2 are important in the
pathogenesis of AD. Aspirin is a strongly COX-1 prefer-
ential NSAID and a small (44 patients), double blind,
placebo-controlled clinical trial of the nonselective drug
indomethacin showed reduction in the rate of cognitive
decline in AD patients (Rogers et al., 1993). Diclofenac
administered with misoprostol showed no statistically
significant effects in an even smaller study although a
trend to prevention was seen (Scharf et al., 1999).

Several lines of evidence suggest that COX-2 is impor-
tant in AD. COX-2 is clearly induced following various
neurotoxic stimuli as mentioned above. Furthermore,
elevated COX-2 is also found in other neurodegenerative
diseases such as in the spinal cord of patients with
sporadic amyotrophic lateral sclerosis and in the spinal
cords of transgenic mice that exhibit an amyotrophic
lateral sclerosis-like syndrome (Almer et al., 2001). Ge-
netic deletion of COX-2 in laboratory animals decreases
susceptibility to ischemic brain injury and N-methyl-D-
aspartate-mediated neurotoxicity (Iadecola et al., 2001),
and COX-2 overexpression in transgenic mice increases
susceptibility to �-amyloid-induced neurotoxicity
(Kelley et al., 1999). A COX-2 selective NSAID reduces
focal ischemic brain injury in a rat model, suggesting a
role for COX-2 in stroke and a possible role of COX-2-
selective inhibitors in stroke treatment (Govoni et al.,
2001); however, pretreatment of mice with NS398 leads
to markedly increased neuronal cell death in the hip-
pocampus and increased mortality following kainate
treatment. This latter finding suggests that inhibition of
COX-2 induced by excitotoxins may be neuroprotective,
but that inhibition of constitutive COX-2 expression may
be deleterious in the event of a seizure (Baik et al.,
1999).

In addition to determining the specific roles that
COX-1 and COX-2 play in AD, other important issues
remain to be addressed with regard to the action of these
drugs in this disease. First, dose levels that maximally
evoke a protective effect in AD need to be determined for
NSAIDs. Limited data suggest that low dose NSAID
treatment may be as effective as high doses (Broe et al.,
2000). If prevention of AD requires inhibition of both
COX-1 and COX-2 as present data suggests, appropriate
dose levels may be difficult to establish due to NSAID-
induced gastric toxicity; however, if low doses are re-
quired, the establishment of regimens with acceptable
toxicity levels for most people should be feasible. Second,
it will be important to determine whether aspirin or
competitively acting NSAIDs more effectively reduce

risk of AD. Most studies have detected a preventive
effect of aspirin in AD, but some studies comparing
aspirin with competitively acting NSAIDs have shown
the latter to be better at reducing risk of AD (Stewart et
al., 1997). Third, the cells directly involved in the
NSAID-induced protection mechanism need to be deter-
mined. NSAIDs may inhibit the inflammatory compo-
nent of AD through inhibiting COX isozymes in neurons
or glial cells. Alternatively, if low doses of NSAIDs max-
imally reduce AD, the important target for anti-AD ther-
apy may be cells of the vascular system such as platelets
or endothelial cells.

V. Cyclooxygenase Isozymes and the Future

Twelve plus years of research on the COX-2 isozyme
has yielded three widely marketed drugs (celecoxib,
valdecoxib, and rofecoxib) developed for COX-2 selectiv-
ity that appear to possess all of the analgesic, anti-
pyretic, and anti-inflammatory activity of the older non-
selective NSAIDs. More drugs are on the horizon. It is
important to note, however, that COX-2-selective drugs
are not more effective than noncompetitive NSAIDs—
thus the term “superaspirins” should be avoided.

The results of long-term treatment with COX-2-selec-
tive drugs, particularly rofecoxib as tested in the VIGOR
trial, is suggestive that these NSAIDs do possess lower
gastrotoxicity than nonselective NSAIDs, but the find-
ing of an elevated incidence of myocardial infarction
(MI) in this study raises the question of whether we
know all of the side-effects that may be associated with
these drugs. Studies during the next decade will reveal
whether this increase in MIs is real or is a statistical
aberration. If the MI effect is real, further studies will
define whether cardiovascular risk is idiosyncratic to
rofecoxib or is to be expected of all selective COX-2
inhibitors.

Historically, NSAIDs have been used palliatively to
treat inflammation, pain, and fever. People who could
tolerate these drugs experienced transient relief from
their symptoms; however, if isozyme-specific NSAIDs
exhibit reduced gastrotoxicity, these new drugs have the
potential of being used even more widely and perhaps as
important chemopreventive agents. This is particularly
promising with regard to decreasing the incidence of
cancer of the gastrointestinal tract and Alzheimer’s dis-
ease. Additionally, the fact that NSAIDs can cause tu-
mor regression may allow future use of these drugs as
adjunctive treatments in cancer. The finding of variants
of COX may provide new roles for the COX genes. Thus
the future may hail exciting new uses for this histori-
cally old class of drugs.
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Isomäki H, Littlejohn G, Mau J, et al. (1998) Gastrointestinal tolerability of
meloxicam compared to diclofenac in osteoarthritis patients. International MEL-
ISSA Study Group. Meloxicam Large-scale International Study Safety Assess-
ment. Br J Rheumatol 37:937–945.

430 SIMMONS ET AL.

 by guest on June 15, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


Hayaishi O (1991) Molecular mechanisms of sleep-wake regulation: roles of prosta-
glandins D2 and E2. FASEB J 5:2575–2581.

He TC, Chan TA, Vogelstein B, and Kinzler KW (1999) PPARdelta is an APC-
regulated target of nonsteroidal anti-inflammatory drugs. Cell 99:335–345.

Hemler M and Lands WE (1976) Purification of the cyclooxygenase that forms
prostaglandins: demonstration of two forms of iron in the holoenzyme. J Biol Chem
251:5575–5579.

Henderson AS, Jorm AF, Christensen H, Jacomb PA, and Korten AE (1997) Aspirin,
anti-inflammatory drugs and risk of dementia. Int J Geriatr Psychiatry 12:926–
930.

Hendrie HC (1997) Epidemiology of Alzheimer’s disease. Geriatrics 52 (Suppl 2):
S4–S8.

Herschman HR, Reddy ST, and Xie W (1997) Function and regulation of prostaglan-
din synthase-2. Adv Exp Med Biol 407:61–66.

Heymann MA, Rudolph AM, and Silverman NH (1976) Closure of the ductus arte-
riosus in premature infants by inhibition of prostaglandin synthesis. N Engl J Med
295:530–533.

Higgs EA, Moncada S, and Vane JR (1978) Inflammatory effects of prostacyclin
(PGI2) and 6-oxo-PGF1a in the rat paw. Prostaglandins 16:153–162.

Higgs GA, Vane JR, Hart FD, and Wojtulewski JA (1974) Effects of anti-
inflammatory drugs on prostaglandins in rheumatoid arthritis, in Prostaglandin
Synthetase Inhibitors (Robinson HJ and Vane JR eds) pp 165–173, Raven Press,
New York.

Higuchi T, Iwama T, Yoshinaga K, Toyooka M, Taketo MM, and Sugihara K (2003)
A randomized, double-blind, placebo-controlled trial of the effects of rofecoxib, a
selective cyclooxygenase-2 inhibitor, on rectal polyps in familial adenomatous
polyposis patients. Clin Cancer Res 9:4756–4760.

Hingtgen CM, Waite KJ, and Vasko MR (1995) Prostaglandins facilitate peptide
release from rat sensory neurons by activating the adenosine 3�,5�-cyclic mono-
phosphate transduction cascade. J Neurosci 15:5411–5419.

Hirata F, Stracke ML, and Schiffmann E (1987) Regulation of prostaglandin forma-
tion by glucocorticoids and their second messenger, lipocortins. J Steroid Biochem
27:1053–1056.

Hizaki H, Segi E, Sugimoto Y, Hirose M, Saji T, Ushikubi F, Matsuoka T, Noda Y,
Tanaka T, Yoshida N, et al. (1999) Abortive expansion of the cumulus and im-
paired fertility in mice lacking the prostaglandin E receptor subtype EP2. Proc
Natl Acad Sci USA 96:10501–10506.

Hla T (1996) Molecular characterization of the 5.2 KB isoform of the human cyclo-
oxygenase-1 transcript. Prostaglandins 51:81–85.

Hla T, Farrell M, Kumar A, and Bailey JM (1986) Isolation of the cDNA for human
prostaglandin H synthase. Prostaglandins 32:829–845.

Hla T and Neilson K (1992) Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci USA
89:7384–7388.

Hla T, Ristimaki A, Appleby S, and Barriocanal JG (1993) Cyclooxygenase gene
expression in inflammation and angiogenesis. Ann N Y Acad Sci 696:197–204.

Ho L, Purohit D, Haroutunian V, Luterman JD, Willis F, Naslund J, Buxbaum JD,
Mohs RC, Aisen PS, and Pasinetti GM (2001) Neuronal cyclooxygenase 2 expres-
sion in the hippocampal formation as a function of the clinical progression of
Alzheimer Diseases. Arch Neurol 58:487–492.

Holgate ST (1986) The pathophysiology of bronchial asthma and targets for its drug
treatment. Agents Actions 18:281–287.

Holtzman MJ, Turk J, and Shornick LP (1992) Identification of a pharmacologically
distinct prostaglandin H synthase in cultured epithelial cells. J Biol Chem 267:
21438–21445.

Hoozemans JJ, Rozemuller AJ, Janssen I, De Groot CJ, Veerhuis R, and Eikelen-
boom P (2001) Cyclooxygenase expression in microglia and neurons in Alzheimer’s
disease and control brain. Acta Neuropathol 101:2–8.

Hörnsten L, Su C, Osbourn AE, Garosi P, Hellman U, Wernstedt C, and Oliw EH
(1999) Cloning of linoleate diol synthase reveals homology with prostaglandin H
synthases. J Biol Chem 274:28219–28224.

Hosie J, Distel M, and Bluhmki E (1996) Meloxicam in osteoarthritis: a 6-month,
double blind comparison with diclofenac sodium. Br J Rheumatol 35 (Suppl
1):39–43.

Hosie J, Distel M, and Bluhmki E (1997) Efficacy and tolerability of meloxicam
versus piroxicam in patients with osteoarthritis of the hip or knee: a six-month
double-blind study. Clin Drug Investig 13:175–184.

Howat DW, Corry DG, and Willoughby DA (1989) The effect of indomethacin on
cartilage breakdown. Agents Actions 27:485–487.

Howe LR, Subbaramaiah K, Brown AM, and Dannenberg AJ (2001) Cyclooxygen-
ase-2: a target for the prevention and treatment of breast cancer. Endocr Relat
Cancer 8:97–114.

Huls G, Koornstra JJ, and Kleibeuker JH (2003) Non-steroidal anti-inflammatory
drugs and molecular carcinogenesis of colorectal carcinomas. Lancet 362:230–232.

Hunt RH, Bowen B, Mortensen ER, Simon TJ, James C, Cagliola A, Quan H, and
Bolognese JA (2000) A randomized trial measuring fecal blood loss after treatment
with rofecoxib, ibuprofen, or placebo in healthy subjects. Am J Med 109:201–206.

Hunt RH, Harper S, Watson DJ, Yu C, Quan H, Lee M, Evans JK, and Oxenius B
(2003) The gastrointestinal safety of the COX-2 selective inhibitor etoricoxib
assessed by both endoscopy and analysis of upper gastrointestinal events. Am J
Gastroenterol 98:1725–1733.

Huskisson EC, Ghozlan R, Kurthen R, Degner FL, and Bluhmki E (1996) A long-
term study to evaluate the safety and efficacy of meloxicam therapy in patients
with rheumatoid arthritis. Br J Rheumatol 35 (Suppl 1):29–34.

Huskisson EC, Macciocchi A, Rahlfs VW, Bernstein RM, Bremner AD, Doyle DV,
Molloy MG, and Burton AE (1999) Nimesulide versus diclofenac in the treatment
of osteoarthritis of the hip or knee: an active controlled equivalence study. Curr
Ther Res 60:253–265.

Huskisson EC, Narjes H, and Bluhmki E (1994) Efficacy and tolerance of meloxicam,
a new NSAID, in daily oral doses of 15, 30 and 60 mg in comparison to 20 mg of
piroxicam in patients with rheumatoid arthritis. Scand J Rheumatol 23 (Suppl
98):115.

Iadecola C, Niwa K, Nogawa S, Zhao X, Nagayama M, Araki E, Morham S, and Ross
ME (2001) Reduced susceptibility to ischemic brain injury and N-methyl-D-
aspartate-mediated neurotoxicity in cyclooxygenase-2-deficient mice. Proc Natl
Acad Sci USA 98:1294–1299.

Jacoby RF, Seibert K, Cole CE, Kelloff G, and Lubet RA (2000) The cyclooxygenase-2
inhibitor celecoxib is a potent preventive and therapeutic agent in the Min mouse
model of adenomatous polyposis. Cancer Res 60:5040–5044.

Jaffe EA and Weksler BB (1979) Recovery of endothelial cell prostacyclin production
after inhibition by low doses of aspirin. J Clin Investig 63:532–535.

Jang BC, Munoz-Najar U, Paik JH, Claffey K, Yoshida M, and Hla T (2003) Lepto-
mycin B, an inhibitor of the nuclear export receptor CRM1, inhibits COX-2 ex-
pression. J Biol Chem 278:2773–2776.

Jarving R, Jarving I, Kurg R, Brash AR, and Samel N (2004) On the evolutionary
origin of cyclooxygenase (COX) isozymes: characterization of marine invertebrate
COX genes points to independent duplication events in vertebrate and inverte-
brate lineages. J Biol Chem 279:13624–13633.

Johansson C and Kollberg B (1979) Stimulation by intragastrically administered E2
prostaglandins of human gastric mucus output. Eur J Pharmacol 9:229–232.

Jones RA (2001) Etodolac: clinical profile of an established selective cyclooxygen-
ase-2 inhibitor, in Therapeutic Roles of Selective COX-2 Inhibitors (Vane JR and
Botting RM eds) pp 482–523, William Harvey Press, London.

Kalgutkar AS and Zhao Z (2001) Discovery and design of selective cyclooxygenase-2
inhibitors as non-ulcerogenic, anti-inflammatory drugs with potential utility as
anti-cancer agents. Curr Drug Targets 2:79–106.

Kampfer H, Brautigam L, Geisslinger G, Pfeilschifter J, and Frank S (2003) Cyclo-
oxygenase-1-coupled prostaglandin biosynthesis constitutes an essential prereq-
uisite for skin repair. J Investig Dermatol 120:880–890.

Kargman SL, O’Neill GP, Vickers PJ, Evans JF, Mancini JA, and Jothy S (1995)
Expression of prostaglandin G/H synthase-1 and -2 protein in human colon cancer.
Cancer Res 55:2556–2559.

Karmali RA, Welt S, Thaler HT, and Lefevre F (1983) Prostaglandins in breast
cancer: relationship to disease stage and hormone status. Br J Cancer 48:689–
696.

Kaufmann WE, Worley PF, Pegg J, Bremer M, and Isakson P (1996) COX-2, a
synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic
sites in rat cerebral cortex. Proc Natl Acad Sci USA 93:2317–2321.

Kawahito Y, Kondo M, Tsubouchi Y, Hashiramoto A, Bishop-Bailey D, Inoue K,
Kohno M, Yamada R, Hla T, and Sano H (2000) 15-deoxy-delta(12,14)-PGJ(2)
induces synoviocyte apoptosis and suppresses adjuvant-induced arthritis in rats.
J Clin Investig 106:189–197.

Kawamori T, Rao CV, Seibert K, and Reddy BS (1998) Chemopreventive activity of
celecoxib, a specific cyclooxygenase-2 inhibitor, against colon carcinogenesis. Can-
cer Res 58:409–412.

Kelley KA, Ho L, Winger D, Freire-Moar J, Borelli CB, Aisen PS, and Pasinetti GM
(1999) Potentiation of excitatoxicity in transgenic mice overexpressing neuronal
cyclooxygenase-2. Am J Pathol 155:995–1004.

Kennedy CR, Zhang Y, Brandon S, Guan Y, Coffee K, Funk CD, Magnuson MA,
Oates JA, Breyer MD, and Breyer RM (1999) Salt-sensitive hypertension and
reduced fertility in mice lacking the prostaglandin EP2 receptor. Nat Med 5:217–
220.

Kitamura Y, Shimohama S, Koike H, Kakimura J, Matsuoka Y, Nomura Y, Gebicke-
Haerter PJ, and Taniguchi T (1999) Increased expression of cylooxygenases and
peroxisome proliferator-activated receptor-gamma in Alzheimer’s disease brains.
Biochem Biophys Res Commun 254:582–586.

Kitzler J, Hill E, Hardman R, Reddy N, Philpot R, and Eling TE (1995) Analysis and
quantitation of splicing variants of the TPA-inducible PGHS-1 mRNA in rat
tracheal epithelial cells. Arch Biochem Biophys 316:856–863.

Koeduka T, Matsui K, Akakabe Y, and Kajiwara T (2000) Molecular characterization
of fatty acid �-hydroperoxide-forming enzyme (�-oxygenase) in rice plants. Bio-
chem Soc Trans 28:765–768.

Kömhoff M, Wang JL, Cheng HF, Langenbach R, McKanna JA, Harris RC, and
Breyer MD (2000) Cyclooxygenase-2-selective inhibitors impair glomerulogenesis
and renal cortical development. Kidney Int 57:414–422.

Konheim YL and Wolford JK (2003) Association of a promoter variant in the induc-
ible cyclooxygenase-2 gene (PTGS2) with type 2 diabetes mellitus in Pima Indians.
Hum Genet 113:377–381.

Konturek SJ, Robert A, Hanchar AJ, and Nezamis JE (1980) Comparison of prosta-
cyclin and prostaglandin E2 on gastric acid secretion, gastrin release, and mucosal
blood flow in dogs. Dig Dis Sci 25:673–679.

Kozak KR, Crews BC, Morrow JD, Wang LH, Ma YH, Weinander R, Jakobsson PJ,
and Marnett LJ (2002) Metabolism of the endocannabinoids, 2-arachidonylglycerol
and anandamide, into prostaglandin, thromboxane, and prostacyclin glycerol es-
ters and ethanolamides. J Biol Chem 277:44877–44885.

Kozak KR, Prusakiewicz JJ, Rowlinson SW, Prudhomme DR, and Marnett LJ (2003)
Amino acid determinants in cyclooxygenase-2 oxygenation of the endocannabinoid
anandamide. Biochemistry 42:9041–9049.

Kraemer SA, Meade EA, and DeWitt DL (1992) Prostaglandin endoperoxide syn-
thase gene structure: identification of the transcriptional start site and 5�-flanking
regulatory sequences. Arch Biochem Biophys 293:391–400.

Kuitert LM, Newton R, Barnes NC, Adcock IM, and Barnes PJ (1996) Eicosanoid
mediator expression in mononuclear and polymorphonuclear cells in normal sub-
jects and patients with atopic asthma and cystic fibrosis. Thorax 51:1223–1228.

Kujubu DA, Fletcher BS, Varnum BC, Lim RW, and Herschman HR (1991) TIS 10,
a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a
novel prostaglandin synthase/cyclooxygenase homologue. J Biol Chem 266:12866–
12872.

Kunkel SL, Chensue SW, and Phan SH (1986a) Prostaglandins as endogenous
mediators of interleukin 1 production. J Immunol 136:186–192.

Kunkel SL, Spengler M, May MA, Spengler R, Larrick J, and Remick D (1988)
Prostaglandin E2 regulates macrophage-derived tumor necrosis factor gene ex-
pression. J Biol Chem 263:5380–5384.

COX-1, COX-2, COX-3, AND PCOXS 431

 by guest on June 15, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


Kunkel SL, Wiggins RC, Chensue SW, and Larrick J (1986b) Regulation of macro-
phage tumour necrosis factor production by prostaglandin E2. Biochem Biophys
Res Commun 137:404–410.

Kunz T and Oliw EH (2001) The selective cyclooxygenase-2 inhibitor rofecoxib
reduces kainate-induced cell death in the rat hippocampus. Eur J Neurosci 13:
569–575.

Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY,
Gildehaus D, Miyashiro JM, Penning TD, Seibert K, et al. (1996) Structural basis
for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature
(Lond) 384:644–648.

Laine L, Harper S, Simon T, Bath R, Johanson J, Schwartz H, Stern S, Quan H, and
Bolognese J (1999) A randomized trial comparing the effect of rofecoxib, a cyclo-
oxygenase-2 specific inhibitor, with that of ibuprofen on the gastroduodenal mu-
cosa of patients with osteoarthritis. Rofecoxib Osteoarthritis Endoscopy Study
Group. Gastroenterology 117:776–783.

Laird JM, Herrero JF, Garcia de la Rubia P, and Cervero F (1997) Analgesic activity
of the novel COX-2 preferring NSAID, meloxicam, in mono-arthritic rats: central
and peripheral components. Inflamm Res 46:203–210.

Lanes SF, Garcia Rodriguez LA, and Hwang E (2000) Baseline risk of gastrointes-
tinal disorders among new users of meloxicam, ibuprofen, diclofenac, naproxen,
and indomethacin. Pharmacoepidemiol Drug Saf 9:113–117.

Laneuville O, Breuer DK, Xu N, Huang ZH, Gage DA, Watson JT, Lagarde M,
DeWitt DL, and Smith WL (1995) Fatty acid substrate specificities of human
prostaglandin endoperoxide H synthase-1 and –2. Formation of 12-hydroxy-
(9Z,13E/Z, 15Z)-octadecatrienoic acids from alpha-linolenic acid. J Biol Chem
270:19330–19336.

Langenbach R, Loftin C, Lee C, and Tiano H (1999a) Cyclooxygenase knockout mice:
models for elucidating isoform-specific functions. Biochem Pharmacol 58:1237–
1246.

Langenbach R, Loftin CD, Lee C, and Tiano H (1999b) Cyclooxygenase-deficient
mice. A summary of their characteristics and susceptibilities to inflammation and
carcinogenesis. Ann N Y Acad Sci 889:52–61.

Langenbach R, Morham SG, Tiano HF, Loftin CD, Ghanayem BI, Chulada PC,
Mahler JF, Lee CA, Goulding EH, Kluckman KD, et al. (1995) Prostaglandin
synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation
and indomethacin-induced gastric ulceration. Cell 83:483–492.

Langman MJ, Jensen DM, Watson DJ, Harper SE, Zhao PL, Quan H, Bolognese JA,
and Simon TJ (1999) Adverse upper gastrointestinal effects of rofecoxib compared
with NSAIDs. J Am Med Assoc 282:1929–1933.

Lanza F, Rack MF, Lynn M, Wolf J, and Sanda M (1987) An endoscopic comparison
of the effects of etodolac, indomethacin, ibuprofen, naproxen, and placebo on the
gastro-intestinal mucosa. J Rheumatol 14:338–341.

Lanza FL and Arnold JD (1989) Etodolac, a new nonsteroidal anti-inflammatory
drug: gastro-intestinal microbleeding and endoscopic studies. Clin Rheumatol
8:5–15.

Lanza FL, Rack MF, Simon TJ, Quan H, Bolognese JA, Hoover ME, Wilson FR, and
Harper SE (1999) Specific inhibition of cyclooxygenase-2 with MK-0966 is associ-
ated with less gastroduodenal damage than either aspirin or ibuprofen. Aliment
Pharmacol Ther 13:761–767.

Lanzo CA, Sutin J, Rowlinson S, Talley J, and Marnett LJ (2000) Fluorescence
quenching analysis of the association and dissociation of a diaryl to cyclooxygen-
ase-1 and cyclooxygenase-2 selectivity. Biochemistry 39:6228–6234.

Lasa M, Mahtani KR, Finch A, Brewer G, Saklatvala J, and Clark AR (2000)
Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein
kinase p38 signaling cascade. Mol Cell Biol 20:4265–4274.

Laulederkind SJ, Wall BM, Ballou LR, and Raghow R (2002) Renal pathology
resulting from PGHS-2 gene ablation in DBA/B6 mice. Prostaglandins Other Lipid
Mediat 70:161–168.

Leese P (1992) Comparison of the effect of etodolac SR and naproxen on gastro-
intestinal blood loss. Curr Med Res Opin 13:13–20.

Leese PT, Hubbard RC, Karim A, Isakson PC, Yu SS, and Geis GS (2000) Effects of
celecoxib, a novel cyclooxygenase-2 inhibitor, on platelet function in healthy
adults: a randomized, controlled trial. J Clin Pharmacol 40:124–132.

Lefkowith JB (1999) Cyclooxygenase-2 specificity and its clinical implications. Am J
Med 106:43S–50S.

Lefkowith JB, Hubbard RC, Zhao WW, and Geis GS (2000a) A comparison study of
the efficacy of two celecoxib dosing regimens–200 mg QD versus 100 mg BID–in
treating the signs and symptoms of osteoarthritis of the knee (Abstract). Ann
Rheum Dis 59 (Suppl 1):297.

Lefkowith JB, Wendt HL, Burr AM, Zhao WW, and Geis GS (2000b) A comparative
study of efficacy and safety in patients with osteoarthritis of the knee receiving
either celecoxib, a COX-2 specific inhibitor, or diclofenac (Abstract). Ann Rheum
Dis 59 (Suppl 1):296.

Lemmel EM, Bolten W, Burgos-Vargas R, Platt P, Nissila M, Sahlberg D, Bjorneboe
O, Baumgartner H, Valat JP, Franchimont P, et al. (1997) Efficacy and safety of
meloxicam in patients with rheumatoid arthritis. J Rheumatol 24:282–290.

Levine L (1981) Arachidonic acid transformation and tumor production. Adv Cancer
Res 35:49–79.

Lewis RA and Austen KF (1981) Mediation of local homeostasis and inflammation by
leukotrienes and other mast cell-dependent compounds. Nature (Lond) 293:103–
108.

Li S, Wang Y, Matsumura K, Ballou LR, Moreham SG, and Blatteis CM (1999) The
febrile response to lipopolysaccharide is blocked in cyclooxygenase-2�/� mice.
Brain Res 825:86–94.

Lightfoot R (1991) Safety and pharmacokinetics of etodolac in normal and high-risk
populations. J Musculoskel Med 8:S40–S46.

Lightfoot R (1997) Comparison of the efficacy and safety of etodolac and piroxicam in
patients with osteoarthritis. Etodolac Study 326 Rheumatoid Arthritis Investiga-
tors Group. J Rheumatol Suppl 47:10–16.

Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, Tran T, Ubeda O, Ashe KH,

Frautschy SA, et al. (2000) Ibuprofen suppresses plaque pathology and inflamma-
tion in a mouse model for Alzheimer’s disease. J Neurosci 20:5709–5714.

Lim H, Paria BC, Das SK, Dinchuk JE, Langenbach R, Trzaskos JM, and Dey SK
(1997) Multiple female reproductive failures in cyclooxygenase 2-deficient mice.
Cell 91:197–208.

Lin HJ, Lakkides KM, Keku TO, Reddy ST, Louie AD, Kau IH, Zhou H, Gim JS, Ma
HL, Matthies CF, et al. (2002) Prostaglandin H synthase 2 variant (Val511Ala) in
African Americans may reduce the risk for colorectal neoplasia. Cancer Epidemiol
Biomark Prev 11:1305–1315.

Linden B, Distel M, and Bluhmki E (1996) A double-blind study to compare the
efficacy and safety of meloxicam 15 mg with piroxicam 20 mg in patients with
osteoarthritis of the hip. Br J Rheumatol 35 (Suppl 1):35–38.

Liou JY, Deng WG, Gilroy DW, Shyue SK, and Wu KK (2001) Colocalization and
interaction of cyclooxygenase-1 with caveolin-1 in human fibroblasts. J Biol Chem
276:34975–34982.

Liou JY, Shyue SK, Tsai MJ, Chung CL, Chu KY, and Wu KK (2000) Colocalization
of prostacyclin synthase with prostaglandin H synthase-1 (PGHS-1) but not phor-
bol ester-induced PGHS-2 in cultured endothelial cells. J Biol Chem 275:15314–
15320.

Liu CH, Chang SH, Narko K, Trifan OC, Wu MT, Smith E, Haudenschild C, Lane
TF, and Hla T (2001) Overexpression of cyclooxygenase-2 is sufficient to induce
tumorigenesis in transgenic mice. J Biol Chem 276:18563–18569.

Liu MC, Bleecker ER, Lichtenstein LM, Kagey-Sobotka A, Niv Y, Mc Lemore TL,
Permutt S, Proud D, and Hubbard WC (1990) Evidence for elevated levels of
histamine, prostaglandin D2, and other bronchoconstricting prostaglandins in the
airways of subjects with mild asthma. Am Rev Respir Dis 142:126–132.

Llorens O, Perez JJ, Palomer A, and Mauleon D (2002) Differential binding mode of
diverse cyclooxygenease inhibitors. J Mol Graph Model 20:359–371.

Loftin CD, Trivedi DB, Tiano HF, Clark JA, Lee CA, Epstein JA, Morham SG, Breyer
MD, Nguyen M, Hawkins BM, et al. (2001) Failure of ductus arteriosus closure and
remodeling in neonatal mice deficient in cyclooxygenase-1 and cyclooxygenase-2.
Proc Natl Acad Sci USA 98:1059–1064.

Loll PJ, Picot D, Ekabo O, and Garavito RM (1996) Synthesis and use of iodinated
nonsteroidal anti-inflammatory drug analogs as crystallographic probes of the
prostaglandin H2 synthase cyclooxygenase active site. Biochemistry 35:7330–
7340.

Loll PJ, Picot D, and Garavito RM (1995) The structural basis of aspirin activity
inferred from the crystal structure of inactivated prostaglandin H2 synthase. Nat
Struct Biol 2:637–643.
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